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Agentic artificial intelligence for multistage physics experiments at a large-scale
user facility particle accelerator
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We present a language-model-driven agentic artificial intelligence (AI) system to autonomously execute
multistage physics experiments on a production synchrotron light source. Implemented at the Advanced Light
Source particle accelerator, the system translates natural language user prompts into structured execution plans
that combine archive data retrieval, control-system channel resolution, automated script generation, controlled
machine interaction, and analysis. In a representative machine physics task, we show that preparation time was
reduced by 2 orders of magnitude relative to manual scripting even for a system expert, while operator-standard
safety constraints were strictly upheld. Core architectural features, plan-first orchestration, bounded tool access,
and dynamic capability selection, enable transparent, auditable execution with fully reproducible artifacts. These
results establish a blueprint for the safe integration of agentic AI into accelerator experiments and demanding
machine physics studies, as well as routine operations, with direct portability across accelerators worldwide and,
more broadly, to other large-scale scientific infrastructures.
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Introduction. Particle accelerators such as the Advanced
Light Source (ALS) [1] are among the most complex scientific
instruments, enabling frontier research in material science
[2,3], chemistry [4], and biology [5]. Their operation requires
continuous oversight by teams with expertise spanning ac-
celerator physics [6], rf systems [7], magnets [8], vacuum
[9], diagnostics [10], and controls [11]. Because subsystem
knowledge is distributed, operators frequently rely on domain
specialists for troubleshooting, advanced tuning, or nonstan-
dard experimental procedures. As user facilities, maximizing
availability and protecting user beam are primary objectives;
at the ALS, any beam interruption typically imposes a down-
time of at least 30 min—and potentially several hours—with
immediate consequences for dozens of concurrent experi-
ments across more than 40 beamlines.

Many accelerator tasks extend beyond routine tuning, re-
quiring custom scripts and deep subsystem knowledge. At
the ALS, the control system exposes more than 230 000
process variables (PVs). Troubleshooting can be particularly
demanding: Unexpected faults lack predefined solutions, forc-
ing operators to identify relevant channels, retrieve archive
data, and assemble ad hoc analysis under time pressure. Be-
cause each case is unique, preparation overhead and cognitive
load are substantial, directly limiting machine availability and
reducing scientific throughput across all beamlines. These
challenges motivate the development of agentic systems that
can translate user intent into structured, reproducible proce-
dures while upholding strict facility safety constraints.
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Recent advances in language models (LMs) point to a
class of agentic systems [12] capable of bridging the gap
between complex infrastructures and intuitive human in-
terfaces. Beyond fluent text generation, LMs have been
shown to support structured reasoning [13], enabling them to
decompose complex objectives into sequential steps. Build-
ing on this foundation, Toolformer [14] demonstrated that
models can be trained to call external tools, while ReAct
[15] introduced reasoning-acting loops that tightly couple
deliberation with execution. These ideas have since been ex-
tended to multiagent orchestration [16], memory-augmented
systems [17], and graph-based planning frameworks [18],
highlighting the potential of agentic artificial intelligence
(AI) to provide structured, inspectable execution. Yet, most
demonstrations remain confined to simulated or low-stakes
domains; several domain-focused systems illustrate this diver-
sity: CHEMCROW augments LMs with chemistry-specific tools
[19], Co-scientist enables autonomous experimental planning
in chemistry [20], and CRISPER-GPT applies agentic orches-
tration to gene-editing workflows [21]; and in synchrotron
science, beamline prototypes such as VISION [22] have been
explored, but reports of autonomous, multistage operation in
production environments at large user facilities are still out-
standing.

The constraints of accelerator facilities illustrate why even
small mistakes, such as a mistuned rf parameter or an in-
correct magnet setting, can cause extended downtime, beam
loss, or hardware damage, with immediate impact not only on
machine health but also on dozens of concurrent experiments
across all beamlines. These high-stakes conditions underscore
the need for interfaces that are both intuitive and auditable.

Early explorations have already applied LMs to accelerator
operation in targeted ways. GAIA [23] introduced a proto-
type assistant at an R&D linac, demonstrating how an LM
could interface with logbooks, trigger control routines, and
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FIG. 1. Overview of the agentic workflow. Multiturn conversational input and external data sources are first processed into a structured
task. Relevant capabilities are dynamically classified on each iteration of the interaction, and the description of the selected tools is passed to
the execution planner. The planner generates a complete, inspectable execution plan with explicit dependencies, which is then carried out by
the agent with context tracking and artifact management.

support operator workflows. Kaiser, et al. [24] presented a
proof-of-principle study where an LM performed beamline
optics optimization from natural language prompts, directly
comparing its performance against established optimization
methods. Sulc, et al. [25] outlined a broader vision for inte-
grating AI systems into accelerator control. While these works
highlight the promise of LM-based interfaces, they remained
limited in scope as either conceptual roadmaps or single-task
demonstrations.

Here, we advance beyond these prototypes by presenting
the deployment of an LM-based multiagent system in a pro-
duction synchrotron, the Accelerator Assistant. The system
provides a natural language interface to an EPICS control en-
vironment [26] and extends beyond simple read/write access,
enabling intuitive interaction with the control system through
natural language: From a single user prompt, it can retrieve
archive data [27], resolve PVs, generate and execute scripts,
and analyze results. In a representative experiment (cf. From
query to experiment), the system autonomously prepares and
executes a complete multistage procedure, reducing prepara-
tion time by 2 orders of magnitude relative to manual scripting
by experts while strictly maintaining operator-standard safety
constraints.

These capabilities are enabled by several architectural
advances. Plan-first orchestration captures every task as an
inspectable execution plan with optional operator approval.
Dynamic capability filtering ensures stable scaling across
a large tool inventory, while structured artifacts, including
JUPYTER NOTEBOOKS [28], json outputs, and logs, provide
reproducibility and transparency. Validating these methods
under the strict availability and safety requirements of the
ALS demonstrates that agentic AI can be used safely in
high-stakes environments. The approach offers a blueprint for
broader integration of LM-driven systems into large-scale sci-
entific facilities, with direct portability to other synchrotrons,
accelerators, and complex scientific infrastructures.

ALS agentic control framework. The workflow of the agen-
tic system follows a modular, capability-centric design that
emphasizes separation of concerns following the OSPREY

framework [29]. Each natural language fragment is first nor-
malized into structured objects, ensuring that downstream

components receive standardized inputs free of ambiguity.
This modularity allows subsystems to be flexibly combined,
enabling the framework to expand with capabilities without
requiring retraining or modification of existing components.
An overview of the complete workflow is shown in Fig. 1. All
elements of the system, including source code, configuration
files, and deployment scripts, are publicly available [30].

Users interact with the system either through a command
line interface or via the OPEN WEBUI [31], accessible from
every control room station as well as remotely through se-
cure terminal access. Authentication is tied to individual user
identities, enabling the framework to maintain personalized
context and memory across sessions. Multiple conversations
can be managed in parallel, allowing users to organize dis-
tinct tasks or experiments into separate threads. As illustrated
in Fig. 2, input is routed through the Accelerator Assis-
tant, which orchestrates connections to the PV database,
archive service, and JUPYTER-based execution environments
[32]. Model inference is performed either locally using
OLLAMA [33] on an NVIDIA H100 node located within
the control room network or externally via the CBORG [34]
gateway; a lab-managed interface that routes requests to ex-
ternal providers such as ChATGPT [35], CLAUDE [36], or
GEMINI [37]. This hybrid architecture balances secure, low-
latency on-premises inference with access to state-of-the-art
foundation models, while integration with EPICS enforces
operator-standard safety constraints for direct interaction with
accelerator hardware.

At each turn, conversational input is translated into a con-
cise and well-structured natural language task description that
isolates objectives and removes redundancy. External knowl-
edge sources, such as personalized memory stores tied to
user identities, documentation, and accelerator databases, are
incorporated to ground terminology and context. The resulting
specification provides a clear objective, giving downstream
components an unambiguous basis for execution while re-
maining human-readable.

The system organizes its functional units into modular
capabilities: self-contained tools for data retrieval, ma-
chine interaction, or analysis—that can be composed as
needed for a given task. Capabilities are then classified for
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FIG. 2. System architecture of the Accelerator Assistant. Control room and remote users access the system via a web interface (OPEN

WEBUI) or command line, which routes requests to the ALS Agent. The agent orchestrates connections to the PV database, archive data,
and execution environments such as JUPYTER. Model inference is performed either locally using OLLAMA or through cloud providers via the
CBORG gateway. Integration with EPICS enables safe interaction with accelerator hardware at the ALS.

relevance to the current task. Each capability is evaluated
independently, with the classification posed as a binary deci-
sion using few-shot, capability-specific examples. Only those
deemed relevant are passed forward, preventing prompt in-
flation and decoupling task complexity from the size of
the overall capability inventory, which ensures efficient op-
eration and allows the framework to scale as capabilities
are added.

Execution proceeds via a plan-first orchestration strategy:
Before any tool is called, the system generates a complete
execution plan that encodes explicit input-output dependen-
cies. This separation of planning and execution ensures that
logic remains transparent, serializable, and subject to inspec-
tion or modification. Plans also provide natural checkpoints
where safety gates can be enforced: Operators or automated
validators may review inputs, outputs, and dependencies prior
to the initiation of any action.

The execution environment is modular and containerized
via PODMAN [38], ensuring reproducibility across both de-
velopment workstations and production control room servers.
Core components, including the agent, OPEN WEBUI, and
JUPYTER services, run in isolated containers, allowing for
consistent deployment, straightforward upgrades, and strict
separation of privileges. Reliability features include check-
pointing, structured error classification, and bounded retries
with automatic replanning when required. Human-in-the-loop
interrupts are supported, allowing users to inspect and approve
plans, code, or memory operations before side effects occur.
Every run produces structured artifacts (including logs, JSON

outputs, and JUPYTER NOTEBOOKS) that provide a complete
provenance trail, enabling reproducibility, auditing, and fur-
ther development of workflows. In addition, the agent can
materialize monitoring artifacts from natural language re-
quests: for example, the prompt “Monitor the beam current
and RF cavity temperature” generates a CS-STUDIO PHOEBUS

DATA BROWSER file [39], a widely used control room toolkit
with deep EPICS integration and the standard interface at the
ALS, preconfigured to query the Archive Appliance for histor-
ical context while updating in real time. These autogenerated
panels both eliminate PV lookup and data entry overhead and

persist as reusable control room resources, yielding a practical
speedup for routine observation and troubleshooting.

Although this work is demonstrated on the ALS, a mature
and well-characterized storage ring, recent developments in
the underlying OSPREY framework extend the approach to a
broader range of accelerator environments. The integration
of advanced agentic code-generation modules, such as the
CLAUDE CODE SDK [40], allows each facility to provide
example code, conventions, and safety patterns that guide
the Python generator to follow local operational practices.
In parallel, OSPREY’s safety layer supports configurable PV
boundary limits as well as write blacklists and whitelists,
enabling facilities to define safe operating ranges without
modifying the framework. These configuration-level mech-
anisms make the system adaptable to variations in actuator
behavior, diagnostic conditions, and metadata quality, provid-
ing a practical path for deployment at facilities with different
levels of maturity.

From query to experiment. To convey the capabilities of
the Accelerator Assistant, we focus on a nonroutine but prac-
tically important machine physics task. Such procedures are
complex enough to require custom scripting but occur too
infrequently for dedicated solutions to exist, making them an
ideal proving ground for agentic control. In this case, the task
involves insertion devices (IDs) [41]: tunable undulator mag-
nets whose gap settings strongly affect both machine optics
and delivered photon beams.

As an illustration, the user made the following request:

“Get the minimum and maximum value of all ID gap values in
the last three days. Then write a script which moves each ID
from maximum to minimum gap and back while measuring
the vertical beam size at beamline 3.1. Sample the gap range
with 30 points, wait 5 s after each new setpoint for the ID to
settle and measure the beam size 5 times at 5 Hz. Return a
hysteresis plot beam size vs gap.”

This demonstration highlights both the scope and the
impact of the system. While the beam-based measurement
sequence itself necessarily requires about an hour, the prepa-
ration effort is reduced from what would typically take several
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FIG. 3. Workflow of the PV Finder subsystem. A normalized export of the MATLAB Middle Layer Accelerator Object provides the data
model, which the agent explores through a strictly bounded API. Natural language queries are split into atomic intents, preprocessed to extract
systems and keywords, and resolved into specific EPICS PVs.

hours of manual scripting and debugging to only a few min-
utes from a single natural language prompt—a speedup of 2
orders of magnitude. This efficiency results from the system’s
ability to transform free-form user input into a structured
execution plan that decomposes the request into modular
steps.

The resulting execution plan organizes the task into a small
number of safety-gated stages that can be inspected and, de-
pending on configuration, approved either at every step or
only for sensitive operations. In the present deployment at
the ALS, the system has been configured to require operator
approval for all write access to the control system. The stages
comprise time-range normalization, PV resolution against the
accelerator middle layer, archive retrieval, data analysis, con-
trolled machine interaction, and visualization.

The workflow begins with time range parsing, a dedicated
language processing task performed by a lightweight model
to ensure low latency. Rather than relying on brittle pat-
tern matching, the model flexibly interprets natural language
fragments such as “last three days” and normalizes them
into standardized datetime ranges that downstream services,
such as archive queries, can directly process.

A central step is PV resolution, handled by the PV
Finder subsystem (Fig. 3). A normalized export of the
MATLAB Middle Layer (MML) [42] Accelerator Object pro-
vides the underlying data model, including approximately
10 000 key PVs across all accelerator subsystems. Be-
cause the MML is implemented at most synchrotron light
sources worldwide, this foundation makes the approach nat-
urally transferable to other storage rings, with only minor
refinements and descriptive renaming required to maintain
a consistent, interpretable database structure for the lan-
guage model. User queries are split into atomic intents,
preprocessed to extract target systems and keywords, and
then resolved into specific PVs by a REACT-style agent
restrained to a strictly bounded application programming
interface (API). This tool-bounded exploration guarantees
auditability while grounding ambiguous user terminology,
such as “ID gap” or “beam size,” into precise EPICS channel
names.

Once PVs and time ranges are resolved, archive retrieval
reduces to a straightforward API call to the archiver client.
Input mapping is handled automatically by the orchestrator,
returning time series data for all relevant IDs without user
intervention.

Execution then proceeds through dynamically generated
Python scripts (Fig. 4). To make this stage robust, code gener-
ation is decomposed into three successive model calls rather
than a single direct request, which can be brittle and prone
to overdesign. First, the model produces a high-level plan
of what the script should achieve. Second, this plan and the
user’s objective are used to generate a structured JSON schema
specifying the expected results. Finally, conditioned on both
the plan and schema, the model produces the minimal Python
code required to carry out the task. Scripts are executed inside
containerized JUPYTER kernels with strict read/write policies,
supporting two modes: read-only (analysis and visualization)
and write-enabled (machine interaction), the latter requiring
operator approval by configuration (default policy), with read-
only analysis as the baseline mode. All code may be reviewed
prior to execution, and every run produces structured artifacts
(JUPYTER NOTEBOOKS, JSON results, and figures) for prove-
nance and reproducibility.

In the aforementioned example, the Python executor is
invoked three times. First, it computes the minimum and
maximum gap values from archived data. Second, it gen-
erates and runs a scan script that sweeps ID gaps between
these values while recording synchronized beam size mea-
surements. Third, it visualizes the acquired data in the form of
a hysteresis plot, confirming the absence of significant beam
size hysteresis. Importantly, these are not just three generic
code-generation calls but invocations of distinct, specialized
capabilities for data analysis, machine operation, and data
visualization. Each capability follows the same modular archi-
tecture and execution flow illustrated in Fig. 4, yet is guided by
tailored prompts that reflect its specific domain. This modular-
ity has proven essential for achieving robust performance in
the control room, ensuring that natural language user requests
can be translated into complex, end-to-end experimental pro-
cedures with full auditability.
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FIG. 4. Pipeline for controlled Python code execution in the Accelerator Assistant. Natural language tasks are translated into a plan, results
schema, and then Python code, which can dynamically access the agent context, is statically analyzed, and may be reviewed by a human
operator. Execution is typically confined to containerized JUPYTER kernels with strict read/write policies, and every run produces session
artifacts (context, notebooks, JSON) for full reproducibility.

By chaining these modular capabilities, the system not
only retrieves and analyzes archived data, but also orches-
trates real-time machine operation. The result here is a series
of consistent and publication-ready plots across all devices.
An example is shown in Fig. 5, demonstrating the expected
absence of hysteresis in the vertical beam size.

This experiment illustrates how the Accelerator Assistant
converts natural language requests into fully executed physics
measurements. Beyond this specific example, the same ar-
chitecture applies to a wide range of machine physics tasks,
providing a reproducible bridge from user intent to automated
execution.

Conclusion. We have presented the deployment of an
LM-based agentic system executing a multistage physics

experiment on a production synchrotron light source storage
ring. By integrating directly with the EPICS control system and
Archive Appliance, the Accelerator Assistant demonstrates
that natural language user requests can be converted into
safe, auditable, and fully automated experimental procedures.
The agent reduces preparation time by 2 orders of magnitude
while preserving operator-standard safety constraints, and it
produces reproducible artifacts that support inspection and
trust.

Key architectural features, including plan-first orchestra-
tion, bounded tool access, and dynamic capability selection,
ensure that the framework scales with growing functionality
while remaining transparent and portable across accelerator
facilities.

FIG. 5. Example output of the Accelerator Assistant: hysteresis measurement of ID gap vs vertical beam size at the ALS. The execution
plan generated by the agent combined historical range extraction, automated script generation, and real-time machine control. The agent
performed a 30-point bidirectional gap sweep with five repeated measurements per point, producing the plot shown here for one device. This
figure illustrates the final output of the agentic workflow, where every step, from parsing natural language to data retrieval, machine control,
and plotting, was generated and executed automatically.
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These results establish a blueprint for the safe integration
of agentic AI into scientific operations. Beyond synchrotrons,
the demonstrated principles are broadly applicable to other
large-scale experimental facilities, where automation, trans-
parency, and reproducibility are equally critical.
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