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Raw Data With Square Features 
Architecture Training MSE Evaluation MSE Training MSE 

 
Evaluation MSE 

 
128-64 0.0265 0.0268 0.0257 0.0260 
256-64 0.0243 0.0245 0.0259 0.0262 

512-128 0.0243 0.0247 0.0243 0.0247 
128-64-32 0.0238 0.0242 0.0243 0.0245 

256-128-64 0.0236 0.0240 0.0240 0.0246 
256-128-64-32 0.0245 0.0249 0.0245 0.0248 

The fitting becomes much better when have two layers and three layers. However, we 
cannot get better results if we have more nodes each layer and/or add more layers. 
Some errors are not reducible. In this case, adding square feature does not help for 
prediction. The deep neural network can learn the useful information similar as square 
features. 15	
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Local	Skew	Correc-on

Dispersion	Wave
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Introduc-on
•	Overall	source	stability	relies	on	maintaining	constant	source	
posiHon/angle	and	intensity	(beam	size	&	current).

•	Source	posiHon/angle	stability	on	the	sub-micron	level	is	
rouHnely	achieved	through	orbit	feedback	(FB)	and	ID	feed-
forwards	(FFs).

•	Top-off	injecHon	maintains	constant	current	on	the	sub-
percent	level	over	the	enHre	user	Hme.

•	Source	size	stability	finally,	is	achieved	through	opHcs	
correcHons	➞	systemaHc	(eg.	ID	FFs)	as	well	as	random	error	
correcHons	(eg.	tune	FB)	are	rouHnely	employed.

•	ID	gap/phase	compensaHon	is	based	on	lookup	tables	for	
skew	quadrupole	correcHons;	recording	these	lookup	tables	
requires	large	amounts	of	dedicated	machine	Hme.

•	Lookup	tables	are	imperfect;	in	addiHon,	the	machine	dri^s	
(eg.	temperature,	ground	se_lement)	➞	ID	compensaHon	
deteriorates	with	Hme.

•	Machine	Learning	offers	a	soluHon	to	this	problem	that	is	
stable	over	Hme	and	requires	li_le	dedicated	machine	Hme.

*)	This	research	is	funded	by	US	Department	of	Energy	(BES	&	
ASCR	Programs),	and	supported	by	the	Director	of	the	Office	of	
Science	of	the	US	Department	of	Energy	under	Contract	No.	
DEAC02-05CH11231.

†)	SCLeemann@lbl.gov

Source	Size	Stability
•	In	addiHon	to	orbit	FBs,	the	ALS	employs	local	opHcs	
correcHons	to	compensate	for	perturbaHons	from	ID	gap/
phase	moHon	➞	local	and	global	quadrupole	and	skew	
quadrupole	correcHons.

•	At	2	GeV	ALS	is	suscepHble	to	ID	focusing	and	skew	errors.

•	Local	ID	FFs	are	used	to	correct	systemaHc	focusing	and	skew	
quadrupol	errors	resulHng	from	ID	moHon.

•	These	ID	FF	tables	are,	however,	imperfect	and	their	
performance	deteriorates	with	Hme	as	the	machine	dri^s.

•	Over	a	24-hour	user	shi^	we	see	mulHple	steps	of	the	verHcal	
beam	size	despite	all	orbit	FBs	and	ID	FFs	running.	The	cause	
of	these	steps	are	ID	gap/phase	changes:

•	These	changes	of	source	size	are	not	just	observed	at	the	
diagnosHc	beamline.	We	can	also	see	them	as	intensity	
fluctuaHons	at	user	beamlines.

•	A	good	example	is	ALS	beamline	5.3.2.2	(STXM)	where	
variaHons	of	verHcal	source	size	translate	directly	to	intensity	
fluctuaHons	in	the	STXM	scans:

•	This	limits	the	STXM	resoluHon;	since	the	beamline	cannot	
average	out	or	normalize	such	fluctuaHons,	the	only	soluHon	
lies	in	stabilizing	the	source.

Machine	Learning	Results
•	SimulaHons	using	user	operaHons	data	showed	that	the	
predicHons	of	such	a	NN	could	be	very	accurate	➞	residuals	
are	on	sub-percent	level:

•	This	allows	using	such	NN	predicHons	to	run	a	NN-based	FF.

•	The	NN	is	fed	current	ID	configuraHons	along	with	many	
possible	skew	quadrupole	seongs	at	~3	Hz	➞	its	predicHons	
are	expected	beam	sizes	for	each	skew	quad	seong.

•	The	NN-based	FF	then	picks	the	beam	size	that	matches	our	
target	to	determine	the	required	skew	quad	configuraHon	➞	
this	is	then	downloaded	to	the	skew	quad	power	supplies.

•	First	tests	at	the	ALS	during	machine	physics	shi^s	showed	a	
dramaHc	increase	of	source	size	stability:

•	The	verHcal	source	size	was	stabilized	by	almost	one	order	of	
magnitude	rms,	and	by	about	a	factor	4	peak-to-peak.

•	As	expected,	since	this	stabilizaHon	was	based	on	a	global	
property	(verHcal	emi_ance),	it	could	therefore	also	be	
confirmed	at	other	source	points.

•	The	sensiHve	5.3.2.2	STXM	beamline	saw	a	4-fold	reducHon	of	
rms	intensity	fluctuaHon	when	the	NN-based	FF	was	running:

Ver-cal	Beam	Size	&	Dispersion	Wave
•	ALS	diagnosHc	beamline	3.1	can	be	used	to	measure	verHcal	
beam	size	with	high	accuracy	at	~5	Hz:

•	VerHcal	beam	size	at	source	points	is	determined	by	a	
dispersion	wave	(which	excites	verHcal	emi_ance,	a	global	
conserved	quanHty)	relying	on	32	skew	quadrupoles:

Neural	Network	&	Training
•	A	neural	network	(NN)	can	deliver	accurate	predicHons	for	
beam	size	as	a	funcHon	of	ID	gap/phase	configuraHons	and	
skew	quadrupole	seongs	described	by	the	dispersion	wave	
parameter	(DWP):

•	The	configuraHon	of	this	NN	has	been	heavily	opHmized	to	
achieve	best	predicHons	(hyper	parameter	tuning):

•	The	NN	is	trained	using	10	Hz	data	including	all	ID	and	skew	
configuraHons	as	well	as	the	beam	sizes	as	measured	at	the	
diagnosHc	beamline	(roughly	35	parameters	in	total).

•	This	training	data	can	be	acquired	during	a	machine	physics	
shi^	where	we	conHnuously	scan	ID	configuraHons	to	mimic	
user	operaHons	while	also	changing	the		verHcal	beam	size:

Outlook
•	With	successful	stabilizaHon	confirmed	at	the	most	sensiHve	
beamline,	the	NN-based	FF	was	put	into	operaHon	during	
user	shi^s.

•	Over	the	course	of	many	days	the	NN-based	FF	ran	
successfully	achieving	sub-percent	level	rms	stability	of	the		
verHcal	beam	size	in	ALS	without	manual	intervenHon.

•	With	the	NN-based	FF	now	running	during	user	operaHons,	
large	amounts	of	user	data	can	be	collected	and	used	for	
online	retraining.

•	Online	retraining	allows	to	retrain	the	NN	based	not	only	on	
original	training	data	(dedicated	shi^s)	but	also	on	data	ob-	
tained	during	user	ops,	with	ID	configuraHons	as	set	by	users.

•	Confirmed	rms	stability	was	further	improved	(up	to	+100%)	
over	extended	periods	of	Hme	without	requiring	any	
addiHonal	dedicated	machine	Hme.
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