

Possibilities for Timing Experiments at the MAX IV Storage Rings

Simon C. Leemann MAX IV Laboratory, May 17, 2016

Introduction

- Assuming we commission to design specifications, what's the next big thing for the MAX IV storage rings?
- Strategy Plan MAX IV Laboratory 2013-2026
- Storage ring upgrades call for
 - Electron beam stability improvements
 - Brightness & coherence improvements (3 GeV)
 - Fill pattern development → timing experiments

http://www.maxiv.lu.se/strategy_report

• Focus here will be on fill patterns and timing experiments in the storage rings (MAX IV baseline design already includes SPF)

Brief Facility Overview

- MAX IV consists of two storage rings and a full-energy injector linac for top-off
- SRs @ 1.5 GeV and 3 GeV, ≈3.5 GeV linac also drives SPF/FEL
- User beamlines: 3 @ SPF, 10 @ 1.5 GeV SR, 19 @ 3 GeV SR

Simon C. Leemann MAX IV Laboratory, May 17, 2016

MAX IV 3 GeV SR Design Parameters

- MAX IV 3 GeV storage ring according to design:
 - 20-fold MBA lattice, 528 m, 500 mA with top-off

10

- 7-bend achromat: 5×3° & 2×1.5°
- $U_0 = 364 \text{ keV/turn}$
- $-\varepsilon_x = 328 \text{ pm rad}, \varepsilon_y = 8 \text{ pm rad}$
- $-v_x = 42.20, v_y = 16.28$

5

- $-\beta_x^* = 9 m, \beta_y^* = 2 m$ $-\sigma_x^* = 54 \mu m, \sigma_y^* = 2-4 \mu m$
- $-\xi_x = -50.0, \xi_y = -50.2 \rightarrow \xi_{x,y} = +1$

PRST-AB 12, 120701 (2009)

PRST-AB 14, 030701 (2011)

IPAC'11, THPC059, p.3029

4/29

JSR 21, 862-877 (2014)

Simon C. Leemann MAX IV Laboratory, May 17, 2016

y [m]

2.0

MAX IV 1.5 GeV SR Design Parameters

- MAX IV 1.5 GeV storage ring according to design:
 - 12-fold DBA lattice, 96 m, 500 mA with top-off
 - DBA 2×15°, integrated magnet design
 - $-U_0 = 1144 \text{ keV/turn}$
 - $-\varepsilon_x = 5.9$ m rad, $\varepsilon_y \approx 60$ pm rad
 - $-v_x = 11.22, v_y = 3.15$

Simon C. Leemann

- $-\beta_x^* = 5.7 \text{ m}, \beta_y^* = 2.8 \text{ m}$
- $\sigma_x^* = 1$ 4 μm, $\sigma_y^* \approx 13$ μm
- $-\xi_x = -23.\xi_y = -17.1 \rightarrow \xi_{x,y} = +1$

Dispersion [m]

MAX IV DDR (Aug 2010)

IPAC'11, WEPO016, p.2430

IPAC'12, TUPPP024, p.1662

Storage Ring RF

- MAX IV storage rings originally designed for high average brightness & multibunch users → time-resolved experiments directed towards SPF
- SRs employ 100 MHz main RF system
 → uniform fill, *no* ion clearing gap
 (5 nC/bunch), top-off injection from

linac (supports SB & MB injection → up to 100 ns trains)

1.5 GeV SR

Main RF Frequency	99.931 MHz
No. of Main Cavities	2
Max. Cavity Voltage	280 kV
Harmonic number	32 (2⁵)

3 GeV SR

Main RF Frequency	99.931 MHz
No. of Main Cavities	6
Max. Cavity Voltage	300 kV
Harmonic number	176 (2 ⁴ × 11)

IPAC'**11**, MOPC051, p.193

JSR **21**, 862-877 (2014)

- Storage rings achieve ≈MHz repetition rates while 100 MHz RF system renders 10 ns bunch spacing & long bunches
- Bunch length further increased by passive Landau cavities at the 3rd harmonic (roughly a factor 5 depending on cavity tuning *and fill pattern*)

Simon C. Leemann MAX IV Laboratory, May 17, 2016

IPAC'**11**, MOPC051, p.193 JSR **21**, 862-877 (2014)

Passive LCs are indispensable in our SRs since they

- ensure sufficient Touschek lifetime

(limiting interruption to SPF operation)

8/29

Simon C. Leemann MAX IV Laboratory, May 17, 2016

IPAC'**11**, MOPC051, p.193 JSR **21**, 862-877 (2014)

- Passive LCs are indispensable in our SRs since they
 - ensure sufficient Touschek lifetime

(limiting interruption to SPF operation)

considering different effects

damp instabilities

Threshold currents(mA) in MAX IV 3 GeV ring

Harmonic cavity is crucial for successful operation!

LER workshop, September 2014

Galina Skripka

IPAC'**11**, MOPC051, p.193 JSR **21**, 862-877 (2014)

- Passive LCs are indispensable in our SRs since they
 - ensure sufficient Touschek lifetime (limiting interruption to SPF operation)
 - damp instabilities
 - conserve ultralow-emittance at high bunch charge (3 GeV SR)

So why timing experiments at storage rings?

- Storage rings are unprecedented in terms of <u>stability</u> and <u>repetition rate</u> while serving many users <u>simultaneously</u>
- Some user groups interested in timing experiments would benefit from repetition rates ≈10⁴ times higher than SPF
- This implies fill patterns and operation modes that go beyond the original MAX IV design, e.g. single-bunch, camshaft, hybrid, etc. → this can perturb operation of the LCs and hence jeopardize storage ring performance

What can we do to be able to serve both single-bunch and multi-bunch users simultaneously at our ring(s)?

Timing Experiments at MAX IV SRs

SRI 2015, THU-P-021

- Launched collaboration between
 - MAX IV Machine Division
 - LU: Stacey Sörensen (Synchrotron Radiation Research) → Raimund Feifel (FASM, GU), Teresia Olsson (grad student, accelerator physics) & Christian Stråhlman (grad student, beamline instrumentation)
 - Nordic timing user community
- Organized three topical events in Lund:
 - two meetings with users (Mar & Sep 2014)
 - user community informed about possibilities & difficulties
 - collected user cases for timing experiments

SRI 2015, THU-P-021

– one workshop with focus on machine implementation (Mar 2015)
 "Workshop on Timing Modes for Low-Emittance Storage Rings"

http://indico.maxiv.lu.se/event/60/

SRI **2015**, THU-P-021

- Discussions with users on:
 - Pulse lengths & interval between pulses
 - Photon energy & intensity
 - Synchronization with lasers and choppers
- User interest for:
 - Electron time of flight, multi-coincidence
 - Ion time of flight, multi-coincidence
 - Short x-ray pulses for electron ARToF
 - Pump-probe exp. with laser synchronization
 - Time-resolved exp. implementing gated detectors
 - Time-resolved luminescence experiments (lifetime from ns to µs)

MHz Chopper @ BESSY II

Enables *1.25 MHz repetition rate* at beamline Requires camshaft bunch in *200 ns window*

Opt. Lett. 40, 2265 (2015)

SRI 2015, THU-P-021

- User meetings resulted in
 - report to MAX IV Directors

http://indico.maxiv.lu.se/event/60/material/0/0.pdf

- three typical user cases of interest

Pump-probe (using gating & opt. choppers)	
Rep. Rate at Experiment	≈ MHz
Pulse Interval	±130 ns for synchr.
RMS Pulse Length	≈100 ps (→ time res.)
No. ph/s (within 1% BW)	≈10 ¹⁴

Coincidence & TOF (choppers/camshaft?)

Rep. Rate at Experiment	10–100 kHz
Pulse Interval	\geq ±150 ns for synchr.
RMS Pulse Length	< 500 ps
No. ph/s (within 1% BW)	≈10 ⁷

ARTOF (camshaft?)Rep. Rate at Experiment≈ MHzPulse Interval≈100 nsRMS Pulse Length10 (optimal) - 200 psNo. ph/s (within 1% BW)≈107

- There are many possibilities to shorten bunch lengths in the rings (e.g. femto-slicing, high-order RF, non-integer harmonic RF, LCs in bunch shortening mode, injection of short bunches from linac, low-alpha optics)
- However, overall users interest appears to be greatest for adequate time structure, decreasing bunch length has lower priority
- From this we derive the following staged approach:
 - Single-bunch / hybrid / camshaft (requires FP control, LC transient issues?)
 - Resonant pulse picking (enables simultaneous multi-bunch users)
 - Pseudo single bunch (increase intensity)
 - ...worry later about shorter pulse lengths

Simon C. Leemann MAX IV Laboratory, May 17, 2016

Fill Pattern Tailoring

- MAX IV SRs can operate in SB or few-bunch mode (linac can inject in both modes) → mainly of use in 1.5 GeV SR (32 bunches, 3.12 MHz)
- Camshaft/hybrid modes would enable timing experiments with choppers (mechanical or optical) and/or gated detectors → mainly of use in 3 GeV SR (176 bunches, 568 kHz)
- However, gaps in FP → transients in passive LCs → variation of bunch lengths and phases along bunch train (→ variation of lifetime & emittance)

Fill Pattern Tailoring (cont.)

 Model & develop mitigation measures in collaboration with N. Milas (LNLS) & R. Nagaoka, F. Cullinan (SOLEIL)

Fill Pattern Tailoring (cont.)

 Model & develop mitigation measures in collaboration with N. Milas (LNLS) & R. Nagaoka, F. Cullinan (SOLEIL)

- bunch profile measurements in MAX II (benchmarking of models)

Fill Pattern Tailoring (cont.)

- Model & develop mitigation measures in collaboration with N. Milas (LNLS) & R. Nagaoka, F. Cullinan (SOLEIL)
 - bunch profile measurements in MAX II (benchmarking of models)
 - e.g. tailor FP to reduce transients (theoretical studies)

http://www.maxiv.lu.se/science/accelerator-physics/current-projects/ timing-modes-in-the-max-iv-storage-rings/

20/29

IPAC'16, WEPOW036

IPAC'16, WEPOW037

Resonant Pulse Picking

- Developed at BESSY II, in user operating since 2014
- Quasi-resonant excitation of a single bunch → incoherent betatron oscillations → emittance increase
- Aperture @ BL ensures only photons from the increased divergence of this bunch reach sample (can be combined with closed orbit bump) while all other BLs receive multi-bunch light

Resonant Pulse Picking (cont.)

- Excitation and bump applied in horizontal plane → preserve vertical plane for monochromatization
- Achievable intensity is trade-off between excitation strength, bump amplitude vs. aperture, and desired pulse purity
- BESSY II: 10⁷-10⁹ ph/s/0.1%
- Excitation an be performed with stripline kicker for BxB
 FB → option to run w/o gap
- NB: BL needs to be able to handle high heat load on aperture
- NB: Excitation always on, photons from excited bunch visible to other BLs too

Pseudo Single Bunch

- Developed at Berkeley for ALS user operation in 2012
- Kick-and-cancel scheme: bunch is kicked onto a separate closed orbit & after a few turns kicked back → angular/spatial separation of radiation emitted from this single bunch
- Aperture @ BL ensures only photons from the this displaced bunch reach sample (can be combined with closed orbit bump) while all other BLs receive multi-bunch light → 10³ suppression (>10⁵ with chopper)

Pseudo Single Bunch (cont.)

- KAC scheme allows users to set variable repetition rate
- PSB KAC relies on kicker performance
 - ALS achieved so far: 1 kV within 40 ns at 1.25 MHz \rightarrow excite in vertical plane
 - in principle: bunch spacing determines required kicker rise/fall time
 - but in practice: pulse length of kicker determines required gap in FP

FIG. 2 (color online). Schematic of the kick-and-cancel mode:(a) Phase space, (b) PSB pulses with adjustable frequency.

Possible Strategy for MAX IV SRs

- Transients are a real issue for our rings → most likely we will have to tailor FP to sufficiently counteract transients in LCs
- Leverage MAX IV's 10 ns natural bunch spacing → PPRE w/o gap and/or relaxed PSB kicker requirements
- Massive global R&D effort on fast injection kickers → operate PSB kicker with little or no gap at all?
- Possible immediately: run 1.5 GeV SR in SB/2-bunch mode
 - bunch length can be as short as 50 ps rms (depending on RF settings)
 - requires time splitting with MB users
 - -variable repetition rates can be achieved with chopper
 - spectral range sufficient? (TOF users so far @ lower energies)

Possible Strategy for MAX IV SRs (cont.)

- Mid-term development: PSB or PPRE in 3 GeV SR (many SS's)
 - PSB renders variable repetition rate and preserves ultralow emittance (possibly not a concern for ARTOF users)
 - PPRE does not require dedicated kicker & lower intensity can be of advantage for some users (e.g. ARTOF)
 - PPRE light available simultaneously at all BLs, PSB only at some
 - Both methods compatible with MB users → no time splitting
- Ideally, develop kicker with ≈ 20 ns pulse that achieves $\approx 10\sigma$ displacement $\rightarrow \approx 100 \mu rad$ (roughly 1kV, 1 cm gap, 1m length)
- Such a kicker could also be beneficial for BxB on-axis injection → hard, low-DA optics, round beams, new IDs, etc.

Possible Strategy for MAX IV SRs (cont.)

- Challenge for both PSB & PPRE: design apertures capable of accepting SB photons while dissipating massive MB heat load
- So far unaddressed requests:
 - -long-pulse, soft radiation (LCs in 1.5 GeV SR not effective in 2-bunch mode)
 - short, hard radiation (LCs required in 3 GeV SR) → shorter (unstretched) camshaft bunches created naturally by proper positioning within gap and exploiting transients in LCs?
 - pulses significantly shorter than natural bunch lengths (≈30ps)
- We have more than enough interesting open questions to work on in the coming years, but we're confident we could be serving timing users at our SRs in the near future

Summary & Outlook

- Few-bunch mode in MAX IV 1.5 GeV SR realizable right away
- Ongoing modeling efforts to
 - understand measured bunch profiles in MAX II
 - quantify transients in LCs driven by FP variations/interruptions
 - quantify longitudinal properties of camshaft bunches
 - develop mitigation measures for transient behavior
 - develop possible PPRE & PSB schemes at MAX IV
 - characterize photon yield & properties from such schemes
- Investigation of improvements in BL instrumentation → e.g. choppers, gated detectors, energy resolution in ARTOF spectrometer, etc.

28/29

IPAC'16. WEPOW036

IPAC'16, WEPOW037

Summary & Outlook (cont.)

- Experimental effort to apply and characterize excitation with stripline kickers as required for PPRE
 - MAX III measurements? (shutdown Dec 2015)
 - with BxB FB in 3 GeV SR once available (→ ideally with APD @ BL)
- Development of a new fast kicker system enabling e.g. PSB
 - funding proposal to SSF rejected Feb 2015
 - however, considered an important enabler for various SR improvements → will continue to pursue topic & seek funding
- ➡Continued R&D on both the accelerator and the BL instrumentation side should enable timing experiments at the MAX IV SRs (and other ultralow-emittance SRs) in the future

