

MAX IV 3 GeV Storage Ring Lattice "State of Affairs"

simon.leemann@maxlab.lu.se

MAX-lab Accelerator Physics Meeting • Dec 12, 2008

The Current Achromat Design

The Current Achromat Design: Dipoles

The Current Achromat Design: Quadrupoles

QFend / QDend

- L = 20 cm
- k = 39.5 T/m, -23.7 T/m

QFm / QF • L = 15 cm • k = 37.9 T/m, 40.1 T/m

QD (in bends) • k = -9.14 T/m

The Current Achromat Design: Sextupoles


```
SDend / SD

• L = 10 cm

• m = -1283 T/m<sup>2</sup>, -1182 T/m<sup>2</sup>
```

SFm / SFo / SFi

- L = 10 cm
- m = 1926 T/m^2 , 1341 T/m^2 , 2130 T/m^2

Lattice Performance (I)

Lattice Performance (2)

Improving the 3 GeV Lattice with Octupoles

(in collaboration with Andreas Streun, SLS/PSI)

The Problem (I)

- MAX IV has ultra-low emittance → need sufficient dynamic aperture (DA) and momentum acceptance (MA) for efficient capture and sufficient lifetime
- Tune "footprint" is too large → we cross too many resonance lines → bad for DA and MA

The Problem (2)

• Source: Sextupoles (required to correct negative natural chromaticity) drive higher-order terms → strong growth of tune shift with energy (ChrTS) and with amplitude (ADTS)

Octupole Hamiltonian & Driving Terms (I)

• Octupole Hamiltonian

$$H_4 = \frac{b_4}{4} \left[x^4 - 6x^2y^2 + y^4 \right] \left(1 - \delta + \delta^2 + \mathcal{O}(\delta^3) \right)_{b_4: \text{ int. oct. strength in } [T/m^3]}_{\delta = \Delta p/p}$$

• Betatron motion on dispersive orbits

$$\begin{array}{l} x = x_{\beta} + \eta \delta \\ \longrightarrow H_{4} &= \frac{b_{4}}{4} [(x_{\beta}^{4} - 6x_{\beta}^{2}y^{2} + y^{4}) \\ &\quad + \delta(-x_{\beta}^{4} + 6x_{\beta}^{2}y^{2} - y^{4} + 4x_{\beta}^{3}\eta - 12x_{\beta}y^{2}\eta) \\ &\quad + \delta^{2}(x_{\beta}^{4} - 6x_{\beta}^{2}y^{2} + y^{4} - 4x_{\beta}^{3}\eta + 12x_{\beta}y^{2}\eta + 6x_{\beta}^{2}\eta^{2} - 6y^{2}\eta^{2}) \\ &\quad + \mathcal{O}(\delta^{3})] \end{array}$$

• Resonance basis (Johan Bengtsson)

$$h_{x,y^{\pm}} = \sqrt{2J_{x,y}}\sqrt{\beta_{x,y}} \times e^{\pm i\varphi_{x,y}} \longrightarrow x_{\beta} = \frac{1}{2} \left(h_{x^{+}} + h_{x^{-}}\right)$$

Octupole Hamiltonian & Driving Terms (2)

• Express octupole Hamiltonian in resonance basis

$$H_4 = \frac{b_4}{4} \frac{1}{16} (h_{x^+}^4 + 4h_{x^+}^3 h_{x^-} + 6h_{x^+}^2 h_{x^-}^2 + 4h_{x^+} h_{x^-}^3 + h_{x^-}^4) + \dots \text{ in total 83 terms to 2nd order in } \delta$$

• Gather octupole terms by phase

$$H_{4} = \sum h_{jklmn}$$

$$= \sum \delta^{n} h_{x+}^{j} h_{x-}^{k} h_{y+}^{l} h_{y-}^{m}$$

$$= \sum \delta^{n} (2J_{x}\beta_{x})^{\frac{j+k}{2}} (2J_{y}\beta_{y})^{\frac{l+m}{2}} e^{i[(j-k)\varphi_{x}+(l-m)\varphi_{y}]}.$$

• Inspect first-order octupole terms

$$(j+k+l+m+n) = 4$$

Octupole Hamiltonian & Driving Terms (3)

• First order octupole terms with phases \rightarrow drive resonances

🅸 Chroma					
	Target	Value			
CrX lin	1.00	0.97			
Cr¥ lin	1.00	1.00			
Qx	H21000	63.34			
ЗQх	Н30000	3.38			
Qx	H10110	26.37			
Qx-2Qy	H10020	43.37			
Qx+2Qy	H10200	11.13			
2Qx	H20001	7.48			
2Qy	H00201	3.15			
CrX sqr	0.00	-14.24			
CrY sqr	0.00	27.67			
dQxx	0.00	12390.85			
dQxy,yx	0.00	15538.92			
dQyy	P 10	-8266.47			
2Qx	Н31000	4764.73			
4Qx	H40000	4585.59			
2Qx	H20110	1610.24			
2Qy	H11200	7553.48			
2Qx- Qy	H20020	5275.78			
2Qx+2 y	н20200	856.24			
2Qy	НООЗ10	10115.30			
4Qy	ноо4оо	1619.15			
CrX cub	00	742.43			
CrY cub	0.00	-205.36			
Sum (b3I	J) ^2	28515.59			

Octupole Hamiltonian & Driving Terms (4)

• Some first order octupole terms carry no phase → **tune shifts**

$$h_{22000} = \frac{3}{8}b_4\beta_x^2 J_x^2$$

$$h_{11110} = -\frac{3}{2}b_4\beta_x\beta_y 2J_x J_y$$

$$h_{00220} = \frac{3}{8}b_4\beta_y^2 J_y^2$$

$$h_{11002} = \frac{6}{4}b_4\eta^2\delta^2\beta_x J_x$$

$$h_{00112} = -\frac{6}{4}b_4\eta^2\delta^2\beta_y J_y$$

- Recall that $2\pi\nu$ and J are conjugate action-angle variables

$$\nu_{x,y} = \frac{1}{2\pi} \frac{\partial H}{\partial J_{x,y}}$$

Octupole Hamiltonian & Driving Terms (5)

$$\nu_{x,y} = \frac{1}{2\pi} \frac{\partial H}{\partial J_{x,y}} \qquad -$$

$$\rightarrow \qquad \frac{\partial \Delta \nu_{x,y}}{\partial J_{x,y}} \quad = \quad$$

$$\frac{1}{2\pi} \frac{\partial^2 H}{\partial J_{x,y}^2}$$

	Target	Value	
CrX lin	1.00	0.97	
Cr¥ lin	1.00	1.00	
Qx	H21000	63.34	
3Qx	H30000	3.38	
Qx	H10110	26.37	
Qx-2Qy	H10020	43.37	
Qx+2Qy	H10200	11.13	
2Qx	H20001	7.48	
2Qy	H00201	3.15	
CrX sqr	0.00	-14.24	
Crv	0.00	21101	
dQxx	0.00	12390.85	
dQxy,yx	0.00	15538.92	
dQyy	0.00	-8266.47	
dQyy 2Qx	0.00	-8266.47	
dQyy 2Qx 4Qx	0.00 H40000	-8266.47 1761.55 4585.59	
dQyy 2Qx 4Qx 2Qx	0.00 H40000 H20110	-8266.47 1761.89 4585.59 1610.24	
dQyy 2Qx 4Qx 2Qx 2Qy	0.00 H40000 H20110 H11200	-8266.47 4585.59 1610.24 7553.48	
dQyy 2Qx 4Qx 2Qx 2Qx 2Qy 2Qy-2Qy	0.00 H40000 H20110 H11200 H20020	-8266.47 1764.85 4585.59 1610.24 7553.48 5275.78	
dQyy 2Qx 4Qx 2Qx 2Qy 2Qy-2Qy 2Qx-2Qy	0.00 H40000 H20110 H11200 H20020 H20200	-8266.47 4761.89 4585.59 1610.24 7553.48 5275.78 856.24	
dQyy 2Qx 4Qx 2Qx 2Qy 2Qy-2Qy 2Qx+2Qy 2Qx+2Qy 2Qy	0.00 H40000 H20110 H11200 H20200 H20200 H00310	-8266.47 1764.85 4585.59 1610.24 7553.48 5275.78 856.24 10115.30	
dQyy 2Qx 4Qx 2Qx 2Qy 2Qx-2Qy 2Qx-2Qy 2Qx+2Qy 2Qy 4Qy	0.00 H40000 H20110 H11200 H20020 H20200 H00310 H00400	-8266.47 4764.89 4585.59 1610.24 7553.48 5275.78 856.24 10115.30 1619.15	
dQyy 2Qx 4Qx 2Qx 2Qy 2Qx-2Qy 2Qx+2Qy 2Qy 4Qy CrX cub	0.00 H40000 H20110 H11200 H20020 H20200 H00310 H00400	-8266.47 1764.85 4585.59 1610.24 7553.48 5275.78 856.24 10115.30 1619.15 742.43	
dQyy 2Qx 4Qx 2Qy 2Qy 2Qx-2Qy 2Qx+2Qy 2Qy 4Qy CrX cub	0.00 H40000 H20110 H11200 H20020 H20200 H00310 H00400 0.00 0.00	-8266.47 4761.89 4585.59 1610.24 7553.48 5275.78 856.24 10115.30 1619.15 742.43 -205.36	

Octupole Hamiltonian & Driving Terms (6)

$$\nu_{x,y} = \frac{1}{2\pi} \frac{\partial H}{\partial J_{x,y}} \longrightarrow \frac{\partial^2 \Delta \nu_{x,y}}{\partial \delta^2} = \frac{1}{2\pi} \frac{\partial^2}{\partial \delta^2} \frac{\partial H}{\partial J_{x,y}}$$

• 2 driving terms for ChrTS (quadratic chromaticity)

$$\xi_{x,y}^{(2)} = \frac{1}{2} \frac{\partial^2 \Delta \nu_{x,y}}{\partial \delta^2} = \frac{1}{4\pi} \frac{\partial^2}{\partial \delta^2} \frac{\partial H}{\partial J_{x,y}}$$
$$\Rightarrow \xi_{x,y}^{(2)} = \pm \frac{3}{4\pi} b_4 \eta^2 \beta_{x,y}$$

	Target	Value	
CrX lin	1 00	0,97	
CrV lin	1.00	1.00	
0v	H21000	62.24	
201	N2 1000	2 20	
5QX	H30000	3.30	
Qx	H10110	26.37	
Qx-2Qy	H10020	43.37	
Qx+2Qy	H10200	11.13	
2 Qx	H20001	7.48	
201			
CrX sqr	0.00	-14.24	
Cr¥ sqr	0.00	27.67	
dQxx			
		_	
aQxy,yx	0.00	15538.92	
dQxy,yx dQyy	0.00	15538.92 -8266.47	
dQxy,yx dQyy 2Qx	0.00 0.00 H31000	15538.92 -8266.47 4764.73	_
dQxy, yx dQyy 2Qx 4Qx	0.00 0.00 H31000 H40000	15538.92 -8266.47 4764.73 4585.59	
dQxy,yx dQyy 2Qx 4Qx 2Ox	0.00 0.00 H31000 H40000 H20110	15538.92 -8266.47 4764.73 4585.59 1610.24	
dQxy,yx dQyy 2Qx 4Qx 2Qx 2Qx	0.00 0.00 H31000 H40000 H20110 H11200	15538.92 -8266.47 4764.73 4585.59 1610.24 7553.48	
dQxy, yx dQyy 2Qx 4Qx 2Qx 2Qy 2Qy	0.00 0.00 H31000 H40000 H20110 H11200 H20020	15538.92 -8266.47 4764.73 4585.59 1610.24 7553.48	
dQxy, yx dQyy 2Qx 4Qx 2Qx 2Qy 2Qx-2Qy	0.00 0.00 H31000 H40000 H20110 H11200 H20020	15538.92 -8266.47 4764.73 4585.59 1610.24 7553.48 5275.78	
dQxy, yx dQyy 2Qx 4Qx 2Qx 2Qy 2Qx-2Qy 2Qx+2Qy	0.00 0.00 H31000 H40000 H20110 H11200 H20020 H20020	15538.92 -8266.47 4764.73 4585.59 1610.24 7553.48 5275.78 856.24	
dQxy, yx dQyy 2Qx 4Qx 2Qx 2Qy 2Qx-2Qy 2Qx+2Qy 2Qy	0.00 0.00 H31000 H40000 H20110 H11200 H20020 H20200 H00310	15538.92 -8266.47 4764.73 4585.59 1610.24 7553.48 5275.78 856.24 10115.30	
dQxy, yx dQyy 2Qx 4Qx 2Qx 2Qy 2Qx-2Qy 2Qx+2Qy 2Qy 4Qy	0.00 0.00 H31000 H20110 H11200 H20020 H20020 H00310 H00400	15538.92 -8266.47 4764.73 4585.59 1610.24 7553.48 5275.78 856.24 10115.30 1619.15	
dQxy, yx dQyy 2Qx 4Qx 2Qx 2Qy 2Qx-2Qy 2Qx+2Qy 2Qy 4Qy CrX cub	0.00 0.00 H31000 H20110 H11200 H20200 H20200 H00310 H00400	15538.92 -8266.47 4764.73 4585.59 1610.24 7553.48 5275.78 856.24 10115.30 1619.15 742.43	
dQxy,yx dQyy 2Qx 4Qx 2Qx 2Qy 2Qx-2Qy 2Qx+2Qy 2Qy 4Qy CrX cub CrY cub	0.00 0.00 H31000 H40000 H20110 H11200 H20020 H20200 H00310 H00400 0.00	15538.92 -8266.47 4764.73 4585.59 1610.24 7553.48 5275.78 856.24 10115.30 1619.15 742.43 -205.36	

How Octupoles Can be Used to Solve Problems (I)

• Matrix formalism for 5 higher-order driving terms and n octupole families

$$\begin{pmatrix} \partial \nu_x / \partial J_x \\ \partial \nu_x / \partial J_y \\ \partial \nu_y / \partial J_y \\ \partial^2 \nu_x / \partial \delta^2 \\ \partial^2 \nu_y / \partial \delta^2 \end{pmatrix} = \mathcal{M}_{5 \times n} \begin{pmatrix} (b_4 l)_1 \\ \vdots \\ (b_4 l)_n \end{pmatrix}$$

5 known expressions evaluated at n octupole locations (β_x , β_y , η)

• From OPA we know what the 5 higher-order driving terms generated by the sextupole are...

Reverse the problem: what octupole strengths (b₄l)_j are required to exactly cancel these 5 terms?

How Octupoles Can be Used to Solve Problems (2)

 Inversion or SVD → use octupoles to cancel higher-order terms generated by sextupoles

- If $n = 5 \rightarrow$ matrix inversion \rightarrow perfect cancellation
- If $n > 5 \rightarrow SVD$ required $\rightarrow perfect$ cancellation, minimize req. oct. strength
- If $n < 5 \rightarrow SVD$ required \rightarrow minimize driving terms
- If no chromatic octupoles available \rightarrow reduce to 3-dim. harmonic problem

Octupoles in the MAX IV Lattice (1)

- Studied different layouts with up to six octupole families
- Chromatic octupoles appear to be detrimental (higher-order chromatic terms)
- Harmonic octupoles at right locations are very efficient (5cm length!)

Octupoles in the MAX IV Lattice (2)

• Three weak and compact families are sufficient for near-perfect cancellation of ADTS while retaining sufficiently small ChrTS

Target

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Value

0.97

1.00

31.74

1.18

12.17

22.20

35.20

7.93

1 72

-43.16

58.10

-2.23

3.68

-6.77

	🍪 Chroma				\$ 🔆 Chroma	
		Target	Value			Tar
	CrX lin	1.00	0.97		CrX lin	0.0
	Cr¥ lin	1.00	1.00		Cr¥ lin	0.0
	Qx	H21000	55.42		Qx	H21000
	3Qx	Н30000	34.94	-	3Qx	H30000
	Qx	H10110	70.20		Qx	H10110
	Qx-2Qy	H10020	78.38		Qx-2Qy	H10020
	Qx+2Qy	H10200	125.50		Qx+2Qy	H10200
	2Qx	H20001	11.35		2 Qx	H20001
	2 Qy	H00201	5.37		2Qy	H00201
	CrX sqr	0.00	-39.41		CrX sqr	0.0
	CrY sqr	0.00	-25.97		Cr¥ sqr	0.0
	dQxx	0.00	11108.84		dQxx	0.0
	dQxy,yx	0.00	30382.00		dQxy,yx	0.0
	dQyy	0.00	2609.39		dQyy	0.0
1						

Simon C. Leemann • Dec 12, 2008

Octupoles in the MAX IV Lattice (3)

- Within required DA we cross not a single regular resonance below 4th order
- MA of the lattice better than ±5%

Octupoles in the MAX IV Lattice (4)

Simon C. Leemann • Dec 12, 2008