

The MAX IV 3 GeV Storage Ring Lattice & Technology

Simon C. Leemann for the MAX-lab Accelerator Physics Group simon.leemann@maxlab.lu.se

Seminar • SPring-8 • May 21, 2010

Outline

- Introduction
 - MAX-lab today
 - The MAX IV Project
- 3 GeV Storage Ring
 - Multibend Achromats
 - Lattice
 - Beam Dynamics (DA, MA, ε, IBS)
 - Performance Outlook
- Technology
 - Magnets & Girders
 - Vacuum System
 - RF System
 - Damping Wigglers

Outline

- Introduction
 - MAX-lab today
 - The MAX IV Project
- 3 GeV Storage Ring
 - Multibend Achromats
 - Lattice
 - Beam Dynamics (DA, MA, ε, IBS)
 - Performance Outlook
- Technology
 - Magnets & Girders
 - Vacuum System
 - RF System
 - Damping Wigglers

Where is MAX-lab? What is MAX-lab?

Where is MAX-lab? What is MAX-lab?

- New site, replacement for present MAX-lab and MAX I, II, III rings
- Funding granted April 2009, construction starts summer 2010, commissioning of the 3 GeV storage ring in 2014, user operation 2015

- New site, replacement for present MAX-lab and MAX I, II, III rings
- Funding granted April 2009, construction starts summer 2010, commissioning of the 3 GeV storage ring in 2014, user operation 2015
- 3.4 GeV linac (SPF, FEL)
 ~ 300m

- New site, replacement for present MAX-lab and MAX I, II, III rings
- Funding granted April 2009, construction starts summer 2010, commissioning of the 3 GeV storage ring in 2014, user operation 2015
- 3.4 GeV linac (SPF, FEL)
 ~ 300m
- 1.5 GeV SR (IR/UV) 12 DBAs $\varepsilon_x = 6 \text{ nm rad}$

- New site, replacement for present MAX-lab and MAX I, II, III rings
- Funding granted April 2009, construction starts summer 2010, commissioning of the 3 GeV storage ring in 2014, user operation 2015
- 3.4 GeV linac (SPF, FEL)
 ~ 300m
- 1.5 GeV SR (IR/UV) 12 DBAs $\varepsilon_x = 6 \text{ nm rad}$
- 3 GeV SR (X-ray)
 20 MBAs
 ε_x < 0.3 nm rad

Outline

- Introduction
 - MAX-lab today
 - The MAX IV Project
- 3 GeV Storage Ring
 - Multibend Achromats
 - Lattice
 - Beam Dynamics (DA, MA, ε, IBS)
 - Performance Outlook
- Technology
 - Magnets & Girders
 - Vacuum System
 - RF System
 - Damping Wigglers

Multibend Achromats for Ultralow Emittance

- MBA originated in the damping ring community
 - \rightarrow simple (many unit cells, high periodicity)
 - → robust (relaxed optics, error tolerance)

Multibend Achromats for Ultralow Emittance

- MBA originated in the damping ring community
 - → simple (many unit cells, high periodicity)
 - → robust (relaxed optics, error tolerance)

 Considered at SLS (EPAC'94) and elsewhere (PAC'95: D. Einfeld et al., Design of a Diffraction Limited Light Source; PAC'95: D. Kaltchev et al., Lattice Studies for a High-brightness Light Source)

Multibend Achromats for Ultralow Emittance

- MBA originated in the damping ring community
 - → simple (many unit cells, high periodicity)
 - → robust (relaxed optics, error tolerance)

- Considered at SLS (EPAC'94) and elsewhere (PAC'95: D. Einfeld et al., Design of a Diffraction Limited Light Source; PAC'95: D. Kaltchev et al., Lattice Studies for a High-brightness Light Source)
- Several iterations at MAX-lab
 - NIM A **508** (2003) 480 \rightarrow 3 GeV (285 m), 12 MBAs, $\epsilon_x = 1.2$ nm rad combined-function magnets, narrow apertures, integrated magnet design
 - PAC '07 \rightarrow 3.0/1.5 GeV rings stacked, 2x12 MBAs, $\varepsilon_x = 0.83$ / 0.4 nm rad replace MAX II with new ring, stacking possible because of magnet integration \rightarrow CDR
 - PRST-AB 12 120701 (2009) → 3 GeV, 528 m, 20 MBAs, ε_x < 0.3 nm rad gradient dipoles, discrete sexts/octs, fully integrated magnet design, build new 1.5 GeV ring to replace MAX II and MAX III → re-evaluated, approved, and funded

MAX IV Multibend Achromat Lattice

- 20 MBAs \rightarrow 19 ID straights
- 5 unit cells, 2 matching cells
- 5 m long straight sections
- 1.3m short straights $(\rightarrow RF)$
- Gradient dipoles
 - 3° bends in UCs (~ 0.5 T)
 - 1.5° soft-end bends in MCs
- Quads, sextupoles, octupoles
- $\eta_{max} = 8 \text{ cm}, \sigma_{y}^{*} < 6 \mu \text{m}$
- $v_x = 42.20, v_y = 14.28$
- nat. $\xi_x = -50, \xi_y = -44$

Why Octupoles?

- Large natural chromaticity + low dispersion \rightarrow strong sextupoles
- Many first-order sextupole driving terms:
 - 2 linear chromaticities + 3 chromatic terms + 5 geometric terms
 - + second-order terms → ADTS, quadratic chromaticity, ... → tune footprint
- However, ADTS is second-order effect in sextupoles (→ weak correction)
- Our solution:
 - Use sextupoles to correct chromaticity and minimize first-order driving terms
 - Use octupoles to correct ADTS (in first order!)
 - \rightarrow compact tune footprint

Tune Footprint with and without Octupoles

Dynamic Aperture

- Injection requirement: 8 mm (2.5 mm safety margin)
 - Vertical: in-vacuum IDs, 4 mm full-gap height
- Shape DA with octupoles (commissioning!)

Lambertson Septum

(2.5 mm)

Inj. Bump

Momentum Acceptance and Lifetime

- Sextupole chromatic correction + 100 MHz RF system
 - → Small chromatic tune footprint
 - → FMA: stop bands > 6%
 - → 6D tracking: lattice MA > 4.5%
 - → Excellent overall MA
- "Worst case" scenario: assume RF MA at 4%
 → Touschek lifetime 26h (low ε!)
 → Total lifetime >10h

- Further improve lifetime? \rightarrow coupling control
 - beam-based BPM calibration to sextupole centers
 - corrector-based realignment of magnet cells as demonstrated at MAX III (NIM A 597 (2008) 170)
 - secondary windings: aux. sextupoles, skew quadrupoles
 - → drive vertical dispersion bumps

Emittance and IBS

- MAX IV 3 GeV SR is IBS-limited!
- Damping wigglers reduce emittance $(B = 2.22 \text{ T}, \lambda = 80 \text{ mm}, L = 2 \text{ m})$
- DWs also increase energy spread \rightarrow reduce IBS contribution to ϵ
- Landau Cavities
 - → increase Touschek lifetime & reduce IBS contribution to ε

	ε_x [nm rad]	
	Without	With
	IBS	IBS
Bare lattice	0.326	0.453
Bare lattice with LC	0.326	0.372
Lattice with four PMDWs and LC	0.263	0.297
Lattice with four PMDWs, ten IVUs, and LC	0.201	0.231

Work on IDs has just started... \rightarrow performance outlook

Outline

- Introduction
 - MAX-lab today
 - The MAX IV Project
- 3 GeV Storage Ring
 - Multibend Achromats
 - Lattice
 - Beam Dynamics (DA, MA, ε, IBS)
 - Performance Outlook
- Technology
 - Magnets & Girders
 - Vacuum System
 - RF System
 - Damping Wigglers

Technology Considerations

- Keep design simple and modular (like lkea)
- Instead of building one machine "to fit all" build several specialized machines
- Small lab \rightarrow make use of existing experience
- Use MAX II & MAX III for prototype testing
- Limited budget
 - \rightarrow use inexpensive technology
 - \rightarrow design for low operational cost

Multibend Achromats → Magnet Technology

• Simple & robust method to reach ultralow $\varepsilon_x \rightarrow$ inexpensive (if ring remains compact!)

- Combined-function magnets and/or integrated magnet design
- Need strong quadrupoles and sextupoles
- Many (mechanically identical) small magnets → 25 mm magnet gap
 - \rightarrow less expensive to manufacture
 - → reduce operational cost
- Power magnets in families; add floating power supplies where necessary
 - \rightarrow reduce cabling costs
 - → reduce complexity

Integrated Magnet Design (3 GeV Storage Ring)

- Each unit cell and matching cell is machined from two solid blocks of iron (demonstrated at MAX III → NIM A 601 (2009) 229)
- Excellent in terms of alignment and comparably inexpensive to manufacture

Integrated Magnet Design (3 GeV Storage Ring)

- Each unit cell and matching cell is machined from two solid blocks of iron (demonstrated at MAX III → NIM A 601 (2009) 229)
- Excellent in terms of alignment and comparably inexpensive to manufacture

Integrated Magnet Design (1.5 GeV Storage Ring)

- Combined-function magnets
- Compact design → I2 DBAs (to replace I0 DBAs in MAX II)

Supports

- Solid iron magnet blocks = "girders"
- Install on simple but massive concrete supports \rightarrow inexpensive
- Vibrational eigenfrequencies pushed beyond 100 Hz \rightarrow stability

Soft-end Dipoles → 2004 Prototype

• Reduce radiation load on downstream ID cold bore \rightarrow superconducting IDs

- Problem: available apertures narrow, space for only few pumps
- Proposed solution: NEG-coated OFHC copper vacuum chamber
 → simple design, narrow apertures, no lumped absorbers, reduce no. of pumps
- Encouraging results @ MAX II → J.Vac. Sci. Technol. A **28**(2), Mar/Apr 2010

100 MHz RF System & Harmonic Landau Cavities

- I00 MHz RF system developed and implemented at MAX II and MAX III (→ EPAC'02, p.2118)
 - → effectively suppresses HOMs in the accelerating cavities
- Inexpensive technology available (FM radio)
- Tetrode amplifiers are inexpensive and have low power consumption → low running cost
- Landau cavities @ 300 MHz: linearize RF
- Long bunches (~ 50 mm)
 - → increase Touschek lifetime
 - → counteract instability (narrow chamber!)
 - \rightarrow run at lower lin. $\xi_{x,y} \rightarrow$ large MA
 - \rightarrow reduce ϵ blow-up from IBS

http://www.maxlab.lu.se/maxlab/max4

Damping Wigglers

- Originally, considered superconducting DWs (lots of experience @ MAX-lab) NIM A 467 (2001) 118, NIM A 521 (2004) 530
- However, SCDWs come with high operational cost
 → Instead: Hybrid-type permanent-magnet DWs
- λ = 80 mm, 9 mm gap, B_{peak} = 2.2T, B_{eff} = 1.9T
- L = 2 / 4 m → P = 20 / 40 kW (@500mA)

NdFeB: Remanence 1.25 T, Intr. Coerc. 25 kOe

NdFeB: Remanence 1.28 T, Intr. Coerc. 21 kOe

Thanks for your attention!

http://www.maxlab.lu.se/maxlab/max4

simon.leemann@maxlab.lu.se