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Different Approaches to Low Emittance

Natural horizontal equilibrium emittance for a flat storage ring:

1 1
eo[nm rad] = 1470 E[GeV]? J:IQ, Jfo — g I—;*
ds 1 H
I, = ?, Iy, = % g(? + 2b2)d8, Is = Eds
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Different Approaches to Low Emittance

Natural horizontal equilibrium emittance for a flat storage ring:

I
golnmrad] = 1470 E[GeV]ngi, T
St

. @
= —j, = % Q(—2 + 2b2)d8, Is = % ds
0

pp

e Theoretical Minimum Emittance (TME) — find suitable { to minimize €g

el — ’735772 =+ 204;37777/ T ﬁff:n/Q
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Different Approaches to Low Emittance

Natural horizontal equilibrium emittance for a flat storage ring:

I
go[nm rad] = 1470 E[GeV]2®5, s

d 1
L=¢=, 4:]{"( +2by)ds, I = %—ds

e Theoretical Minimum Emittance (TME) — find suitable { to minimize €g

el — ’7;3772 =+ 204;57777/ T 5:377/2

e Gradient bends = increase J, with vertically focusing gradient in dipoles
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Different Approaches to Low Emittance

Natural horizontal equilibrium emittance for a flat storage ring:

I
eo[nmrad] = 1470 E[GeV]? L, =
12 Iy

_Jds _ [ 1 L

L= L= § U+ 2a)ds, L= § 5

e Theoretical Minimum Emittance (TME) — find suitable { to minimize €g

el — ’7;3772 =+ 204;37777/ T 5:377/2

e Gradient bends = increase J, with vertically focusing gradient in dipoles

* Dispersive straights, damping wigglers, longitudinal gradient bends, etc.
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Different Approaches to Low Emittance

Natural horizontal equilibrium emittance for a flat storage ring:

I I
eo[nmrad] = 1470 E[GeV]? y 5] e 1_4
xt2 2

ds n. 1 H
= —, Iy= % —(—= + 2by)ds, I5= —ds
’ p? p(pQ ) p

el — ’7;3772 =+ 204;57777/ T 5:377/2

Dispersive straights, damping wigglers, longitudinal gradient bends, etc.

Bad] — ? E[GeV]? ®[°]

X
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Theoretical Minimum Emittance (TME) — find suitable H to minimize £g

Gradient bends — increase J,, with vertically focusing gradient in dipoles

Multibend achromat (MBA) — many weak bends — relax optics constraints




Multibend Achromat Lattices

* Example: MAX IV 3 GeV storage ring = 7-bend achromat, £g = 326 pm rad

* Need very compact optics to prevent MBA ring from becoming large & costly

MAX 1V 3 GeV Storage Ring: 20 x 7BA — 528m, &,= 326 pm rad
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PRST-AB 12, 120701 (2009)
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* Example: MAX IV 3 GeV storage ring = 7-bend achromat, £g = 326 pm rad

Multibend Achromat Lattices

* Need very compact optics to prevent MBA ring from becoming large & costly

= Combined-function magnets — integrate defocusing into bend — increases S
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Multibend Achromat Lattices

* Example: MAX IV 3 GeV storage ring = 7-bend achromat, £g = 326 pm rad

* Need very compact optics to prevent MBA ring from becoming large & costly

= Combined-function magnets — integrate defocusing into bend — increases S

= Fully integrated magnet design
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Multibend Achromat Lattices

* Example: MAX IV 3 GeV storage ring = 7-bend achromat, £g = 326 pm rad

* Need very compact optics to prevent MBA ring from becoming large & costly

= Combined-function magnets — integrate defocusing into bend — increases S

= Fully integrated magnet design IPAC’I1,WEPOOI5
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Multibend Achromat Lattices

* Example: MAX IV 3 GeV storage ring = 7-bend achromat, £g = 326 pm rad

* Need very compact optics to prevent MBA ring from becoming large & costly

= Combined-function magnets — integrate defocusing into bend — increases S
= Fully integrated magnet design IPAC’I1,WEPOOI5

= Small magnets with narrow apertures (vacuum issues = NEG coating)

. - e PAC' 1, TUPSO16
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The Nonlinear Optics Challenge in a MBA Lattice

* Strong focusing optics — large negative natural chromaticity, small dispersion

= Require strong sextupoles — adjust two chromatic terms (linear chromaticity)
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The Nonlinear Optics Challenge in a MBA Lattice

* Strong focusing optics — large negative natural chromaticity, small dispersion

= Require strong sextupoles — adjust two chromatic terms (linear chromaticity)

hi1oo1 — &LV hoot11 — &M

 But additional 3 chromatic and 5 geometric terms (RDTs) also need to be

minimized
. dn h21000 — Vg
10002 — %

13 h30000 — 3V

h20001 — d; hio110 — Vg
dﬁ thZOO — Vg + 2Vy

@y
fio201 — —< h10020 — Ve — 20y

... and this is just to first order!

Low Emittance Rings 201 | * Heraklion * October 3,201 | I3 0f 27



The Nonlinear Optics Challenge in a MBA Lattice

* In addition, second-order effects determine amplitude-dependent tune shift
(ADTS) and 2nd-order chromaticity

(9%,; 8Vy an _% é_(2) é_(2)
07, 97, 0, o, & %

= Control of these terms is crucial to reduce tune footprint = increase dynamic
aperture (DA) and momentum acceptance (MA)
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The Nonlinear Optics Challenge in a MBA Lattice

* In addition, second-order effects determine amplitude-dependent tune shift
(ADTS) and 2nd-order chromaticity

(9V$ 8Vy an _% é_(2) é_(2)
8J,’ 8J," 8, _ 81, == %

= Control of these terms is crucial to reduce tune footprint = increase dynamic
aperture (DA) and momentum acceptance (MA)
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A Strategy to Optimize Nonlinear Dynamics in a MBA

* Weak dispersion — second-order corrections with sextupoles require extra
strength = RDTs increase — potential run-away cycle

= |[nstead, make efficient use of multipoles:
* Use sextupoles to correct linear chromaticity and minimize first-order RDTs
* Introduce octupoles to correct ADTS and/or 2nd-order chromaticity
* Introduce decapoles to correct 3rd-order chromaticity

= Comparably weak octupoles/decapoles are sufficient to compensate higher-
order effects from strong sextupoles

PRST-AB 14,030701 (2011)
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A Strategy to Optimize Nonlinear Dynamics in a MBA

* Example: octupole Hamiltonian

0Av, /0J, (Bz)? (B) %,

( 0Av, /0, \ A ( “2Bafyht - —2(Bafy).c \ [
0Avj0d, |==| BR - (Bl ;
32Aux/(952 (772533) 4(n 2595) g (baL)n .

\ 0% Avy /06 ) K —4(°By)1 - —4(10°By) Noe )

Tune shifts 51/0Ct Optics Boct Octupole family strengths 54

= Pseudoinversion (SVD) — octupole strengths required to cancel tune shifts of
bare sextupole lattice

by = B_1

5VOCt — Bl

oct oct

* OPA is an extremely useful tool for this work — direct interaction, weighting,
display of sextupole kicks and RDTs in complex plane, RDT minimization,
optimization of octupoles/decapoles (SVD), etc. htp://people.web.psi.ch/streun/opa

 But ultimately, lattice performance determined by magnet errors, misalignments,
ID matching, IBS, etc. = require tracking to verify = Tracy-3 for MAX IV SRs
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Nonlinear Optimization of the MAX IV 3 GeV SR

* Introduce sextupoles to correct linear chromaticity & minimize first-order RDTs

y [m]
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Nonlinear Optimization of the MAX IV 3 GeV SR

* Introduce sextupoles to correct linear chromaticity & minimize first-order RDTs

* Introduce three non-dispersive octupole families to adjust three ADTS terms
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Nonlinear Optimization of the MAX IV 3 GeV SR

* Introduce sextupoles to correct linear chromaticity & minimize first-order RDTs
* Introduce three non-dispersive octupole families to adjust three ADTS terms
* This adjustment is only first-order, but higher-order terms are still present!

= |nstead of first-order cancellation, adjust first-order terms to minimize resulting
overall ADTS across area of interest
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Nonlinear Optimization of the MAX IV 3 GeV SR

* Introduce sextupoles to correct linear chromaticity & minimize first-order RDTs
* Introduce three non-dispersive octupole families to adjust three ADTS terms
* This adjustment is only first-order, but higher-order terms are still present!

= |nstead of first-order cancellation, adjust first-order terms to minimize resulting
overall ADTS across area of interest

* Chromatic octupoles/decapoles not required to further reduce chrom. footprint
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Nonlinear Optimization of the MAX IV 3 GeV SR

Results of nonlinear optimization with octupoles in MAX IV

* ADTS limited = very compact tune footprint = large on-momentum DA
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Nonlinear Optimization of the MAX IV 3 GeV SR

Results of nonlinear optimization with octupoles in MAX IV
* ADTS limited = very compact tune footprint = large on-momentum DA

* Sextupoles freed up for chromatic correction = small chromatic tune footprint
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Nonlinear Optimization of the MAX IV 3 GeV SR

Results of nonlinear optimization with octupoles in MAX IV
* ADTS limited = very compact tune footprint = large on-momentum DA

* Sextupoles freed up for chromatic correction = small chromatic tune footprint
— large MA (Touschek lifetime!)
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Nonlinear Optimization of the MAX IV 3 GeV SR

Results of nonlinear optimization with octupoles in MAX IV

* ADTS limited = very compact tune footprint = large on-momentum DA

* Sextupoles freed up for chromatic correction = small chromatic tune footprint

— large MA

* Tracking with errors and IDs confirms DA remains sufficient
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Nonlinear Optimization of the MAX IV 3 GeV SR

Results of nonlinear optimization with octupoles in MAX IV
* ADTS limited = very compact tune footprint — large on-momentum DA

* Sextupoles freed up for chromatic correction = small chromatic tune footprint
— large MA

* Tracking with errors and IDs confirms DA remains sufficient

Along with other ingredients...
* 100 MHz RF system with Landau cavities (300 MHz)

= [ncrease Touschek lifetime & limit IBS emittance blowup

* As emittance decreases (DWs, strong IDs) — Touschek lifetime increases
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Nonlinear Optimization of the MAX IV 3 GeV SR

Results
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