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Natural horizontal equilibrium emittance for a flat storage ring:

Different Approaches to Low Emittance
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Natural horizontal equilibrium emittance for a flat storage ring:

• Theoretical Minimum Emittance (TME) → find suitable      to minimize

Different Approaches to Low Emittance
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Natural horizontal equilibrium emittance for a flat storage ring:

• Theoretical Minimum Emittance (TME) → find suitable      to minimize

• Gradient bends → increase       with vertically focusing gradient in dipoles

Different Approaches to Low Emittance
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Natural horizontal equilibrium emittance for a flat storage ring:

• Theoretical Minimum Emittance (TME) → find suitable      to minimize

• Gradient bends → increase       with vertically focusing gradient in dipoles

• Dispersive straights, damping wigglers, longitudinal gradient bends, etc.

Different Approaches to Low Emittance
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Natural horizontal equilibrium emittance for a flat storage ring:

• Theoretical Minimum Emittance (TME) → find suitable      to minimize

• Gradient bends → increase       with vertically focusing gradient in dipoles

• Dispersive straights, damping wigglers, longitudinal gradient bends, etc.

• Multibend achromat (MBA) → many weak bends → relax optics constraints

Different Approaches to Low Emittance
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• Example: MAX IV 3 GeV storage ring → 7-bend achromat,      = 326 pm rad

• Need very compact optics to prevent MBA ring from becoming large & costly

Multibend Achromat Lattices
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PRST-AB 12, 120701 (2009)
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• Example: MAX IV 3 GeV storage ring → 7-bend achromat,      = 326 pm rad

• Need very compact optics to prevent MBA ring from becoming large & costly

➡Combined-function magnets → integrate defocusing into bend → increases

Multibend Achromat Lattices
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• Example: MAX IV 3 GeV storage ring → 7-bend achromat,      = 326 pm rad

• Need very compact optics to prevent MBA ring from becoming large & costly

➡Combined-function magnets → integrate defocusing into bend → increases
➡ Fully integrated magnet design

Multibend Achromat Lattices

9

ε0

Jx

15
x [m]

y [m]

5 10 20 25

2.0



of 27Low Emittance Rings 2011 • Heraklion • October 3, 2011

• Example: MAX IV 3 GeV storage ring → 7-bend achromat,      = 326 pm rad

• Need very compact optics to prevent MBA ring from becoming large & costly

➡Combined-function magnets → integrate defocusing into bend → increases
➡ Fully integrated magnet design

Multibend Achromat Lattices
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• Example: MAX IV 3 GeV storage ring → 7-bend achromat,      = 326 pm rad

• Need very compact optics to prevent MBA ring from becoming large & costly

➡Combined-function magnets → integrate defocusing into bend → increases
➡ Fully integrated magnet design
➡ Small magnets with narrow apertures (vacuum issues → NEG coating)

Multibend Achromat Lattices
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• Strong focusing optics → large negative natural chromaticity, small dispersion

➡Require strong sextupoles → adjust two chromatic terms (linear chromaticity)
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The Nonlinear Optics Challenge in a MBA Lattice
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• Strong focusing optics → large negative natural chromaticity, small dispersion

➡Require strong sextupoles → adjust two chromatic terms (linear chromaticity)

• But additional 3 chromatic and 5 geometric terms (RDTs) also need to be 
minimized

... and this is just to first order!

The Nonlinear Optics Challenge in a MBA Lattice
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• In addition, second-order effects determine amplitude-dependent tune shift 
(ADTS) and 2nd-order chromaticity

➡Control of these terms is crucial to reduce tune footprint → increase dynamic 
aperture (DA) and momentum acceptance (MA) 

➡

The Nonlinear Optics Challenge in a MBA Lattice
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• In addition, second-order effects determine amplitude-dependent tune shift 
(ADTS) and 2nd-order chromaticity

➡Control of these terms is crucial to reduce tune footprint → increase dynamic 
aperture (DA) and momentum acceptance (MA) 

➡

The Nonlinear Optics Challenge in a MBA Lattice
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• Weak dispersion → second-order corrections with sextupoles require extra 
strength → RDTs increase → potential run-away cycle
➡ Instead, make efficient use of multipoles:

• Use sextupoles to correct linear chromaticity and minimize first-order RDTs

• Introduce octupoles to correct ADTS and/or 2nd-order chromaticity

• Introduce decapoles to correct 3rd-order chromaticity

• ...
➡Comparably weak octupoles/decapoles are sufficient to compensate higher-

order effects from strong sextupoles

A Strategy to Optimize Nonlinear Dynamics in a MBA
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• Example: octupole Hamiltonian

➡Pseudoinversion (SVD) → octupole strengths required to cancel tune shifts of 
bare sextupole lattice

• OPA is an extremely useful tool for this work → direct interaction, weighting, 
display of sextupole kicks and RDTs in complex plane, RDT minimization, 
optimization of octupoles/decapoles (SVD), etc.

• But ultimately, lattice performance determined by magnet errors, misalignments, 
ID matching, IBS, etc. → require tracking to verify → Tracy-3 for MAX IV SRs

A Strategy to Optimize Nonlinear Dynamics in a MBA
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Nonlinear Optimization of the MAX IV 3 GeV SR
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• Introduce sextupoles to correct linear chromaticity & minimize first-order RDTs
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Nonlinear Optimization of the MAX IV 3 GeV SR
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• Introduce sextupoles to correct linear chromaticity & minimize first-order RDTs

• Introduce three non-dispersive octupole families to adjust three ADTS terms
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• Introduce sextupoles to correct linear chromaticity & minimize first-order RDTs

• Introduce three non-dispersive octupole families to adjust three ADTS terms

• This adjustment is only first-order, but higher-order terms are still present!
➡ Instead of first-order cancellation, adjust first-order terms to minimize resulting 

overall ADTS across area of interest

Nonlinear Optimization of the MAX IV 3 GeV SR
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• Introduce sextupoles to correct linear chromaticity & minimize first-order RDTs

• Introduce three non-dispersive octupole families to adjust three ADTS terms

• This adjustment is only first-order, but higher-order terms are still present!
➡ Instead of first-order cancellation, adjust first-order terms to minimize resulting 

overall ADTS across area of interest

• Chromatic octupoles/decapoles not required to further reduce chrom. footprint

Nonlinear Optimization of the MAX IV 3 GeV SR
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Nonlinear Optimization of the MAX IV 3 GeV SR

22

Results of nonlinear optimization with octupoles in MAX IV

• ADTS limited → very compact tune footprint → large on-momentum DA
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Results of nonlinear optimization with octupoles in MAX IV

• ADTS limited → very compact tune footprint → large on-momentum DA

• Sextupoles freed up for chromatic correction → small chromatic tune footprint

Nonlinear Optimization of the MAX IV 3 GeV SR
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Results of nonlinear optimization with octupoles in MAX IV

• ADTS limited → very compact tune footprint → large on-momentum DA

• Sextupoles freed up for chromatic correction → small chromatic tune footprint 
→ large MA (Touschek lifetime!)
➡

Nonlinear Optimization of the MAX IV 3 GeV SR

24

 0

 1

 2

 3

 4

 5

 6

 7

-15 -10 -5  0  5  10  15

y 
[m

m
]

x [mm]

Dynamic Aperture, =0.0%
Dynamic Aperture, =4.5%

Dynamic Aperture, =-4.5%
Vacuum Chamber
Physical Aperture

Required Aperture

-10

-5

 0

 5

 10

 0  5  10  15  20  25

ac
c [

%
]

s [m]

1.8 MV

1.0 MV



of 27Low Emittance Rings 2011 • Heraklion • October 3, 2011

Nonlinear Optimization of the MAX IV 3 GeV SR
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Results of nonlinear optimization with octupoles in MAX IV

• ADTS limited → very compact tune footprint → large on-momentum DA

• Sextupoles freed up for chromatic correction → small chromatic tune footprint 
→ large MA

• Tracking with errors and IDs confirms DA remains sufficient
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Nonlinear Optimization of the MAX IV 3 GeV SR
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Results of nonlinear optimization with octupoles in MAX IV

• ADTS limited → very compact tune footprint → large on-momentum DA

• Sextupoles freed up for chromatic correction → small chromatic tune footprint 
→ large MA

• Tracking with errors and IDs confirms DA remains sufficient

Along with other ingredients...

• 100 MHz RF system with Landau cavities (300 MHz)
➡ Increase Touschek lifetime & limit IBS emittance blowup

• As emittance decreases (DWs, strong IDs) → Touschek lifetime increases
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Results of nonlinear optimization with octupoles in MAX IV

• ADTS limited → very compact tune footprint → large on-momentum DA

• Sextupoles freed up for chromatic correction → small chromatic tune footprint 
→ large MA

• Tracking with errors and IDs confirms DA remains sufficient

Along with other ingredients...

• 100 MHz RF system with Landau cavities (300 MHz)
➡ Increase Touschek lifetime & limit IBS emittance blowup

• As emittance decreases (DWs, strong IDs) → Touschek lifetime increases
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