

The MAX IV 3 GeV Storage Ring Multibend Achromats for Ultralow Emittance

Simon C. Leemann for the MAX-lab Accelerator Physics Group simon.leemann@maxlab.lu.se

Where is MAX-lab? What is MAX-lab?

Where is MAX-lab? What is MAX-lab?

- New site, replacement for present MAX-lab and MAX I, II, III rings
- Funding granted April 2009, construction starts mid 2010, commissioning of the 3 GeV storage ring in 2014, user operation 2015

- New site, replacement for present MAX-lab and MAX I, II, III rings
- Funding granted April 2009, construction starts mid 2010, commissioning of the 3 GeV storage ring in 2014, user operation 2015
- 3 GeV linac (SPF, FEL)
 ~ 300m

- New site, replacement for present MAX-lab and MAX I, II, III rings
- Funding granted April 2009, construction starts mid 2010, commissioning of the 3 GeV storage ring in 2014, user operation 2015
- 3 GeV linac (SPF, FEL)
 ~ 300m
- 1.5 GeV SR (IR/UV) 12 DBAs $\varepsilon_x = 6 \text{ nm rad}$

- New site, replacement for present MAX-lab and MAX I, II, III rings
- Funding granted April 2009, construction starts mid 2010, commissioning of the 3 GeV storage ring in 2014, user operation 2015
- 3 GeV linac (SPF, FEL)
 ~ 300m
- 1.5 GeV SR (IR/UV) 12 DBAs $\varepsilon_x = 6 \text{ nm rad}$
- 3 GeV SR (X-ray)
 20 MBAs
 ε_x < 0.3 nm rad

Multibend Achromats for Ultralow Emittance

- Originated in the damping ring community
 - → simple (many unit cells, high periodicity)
 - \rightarrow robust (relaxed optics, error tolerance)

Multibend Achromats for Ultralow Emittance

- Originated in the damping ring community
 - → simple (many unit cells, high periodicity)
 - → robust (relaxed optics, error tolerance)

 Considered at SLS (EPAC'94) and elsewhere (PAC'95: D. Einfeld et al., Design of a Diffraction Limited Light Source; PAC'95: D. Kaltchev et al., Lattice Studies for a High-brightness Light Source)

Multibend Achromats for Ultralow Emittance

- Originated in the damping ring community
 - → simple (many unit cells, high periodicity)
 - → robust (relaxed optics, error tolerance)

- Considered at SLS (EPAC'94) and elsewhere (PAC'95: D. Einfeld et al., Design of a Diffraction Limited Light Source; PAC'95: D. Kaltchev et al., Lattice Studies for a High-brightness Light Source)
- Several iterations at MAX-lab
 - NIM A **508** (2003) 480 \rightarrow 3 GeV (285 m), 12 MBAs, $\epsilon_x = 1.2$ nm rad combined-function magnets, narrow apertures, integrated magnet design
 - PAC '07 \rightarrow 3.0/1.5 GeV rings stacked, 2x12 MBAs, $\varepsilon_x = 0.83$ / 0.4 nm rad replace MAX II with new ring, stacking possible because of magnet integration \rightarrow CDR
 - PRST-AB 12 120701 (2009) → 3 GeV, 528 m, 20 MBAs, ε_x < 0.3 nm rad gradient dipoles, discrete sexts/octs, fully integrated magnet design, build new 1.5 GeV ring to replace MAX II and MAX III → re-evaluated, approved, and funded

MAX IV Multibend Achromat Lattice

- 20 MBAs \rightarrow 19 ID straights
- 5 unit cells, 2 matching cells
- 5 m long straight sections
- 1.3m short straights $(\rightarrow RF)$
- Gradient dipoles
 - 3° bends in UCs (~ 0.5 T)
 - 1.5° soft-end bends in MCs
- Quads, sextupoles, octupoles
- $\eta_{max} = 8 \text{ cm}, \sigma_{y}^{*} < 6 \mu \text{m}$
- $v_x = 42.20, v_y = 14.28$
- nat. $\xi_x = -50, \xi_y = -44$

Integrated Magnet Design

- Compact MBA optics \rightarrow highly-integrated magnet design
- Each unit cell and matching cell is machined from two solid blocks of iron (demonstrated at MAX III → NIM A 601 (2009) 229)
- Machining precision \rightarrow excellent alignment (small beam size \rightarrow tolerances!)

Dynamic Aperture

- Octupoles → minimize ADTS (first-order effect!)
- Injection requirement: 8 mm (2.5 mm safety margin)
- Vertical: in-vacuum IDs, 4 mm full-gap height

48th ICFA Advanced Beam Dynamics Workshop on Future Light Sources • SLAC • March 1–5, 2010

Lambertson Septum

(2.5 mm)

Inj. Bump

Momentum Acceptance and Lifetime

- Sextupole chromatic correction + 100 MHz RF system
 - → Small chromatic tune footprint
 - → FMA: stop bands > 6%
 - → 6D tracking: lattice MA > 4.5%
 - → Excellent overall MA
- "Worst case" scenario: assume RF MA at 4%
 → Touschek lifetime 26h (low ε!)
 → Total lifetime >10h

- Further improve lifetime? \rightarrow coupling control
 - beam-based BPM calibration to sextupole centers
 - corrector-based realignment of magnet cells as demonstrated at MAX III (NIM A 597 (2008) 170)
 - secondary windings: aux. sextupoles, skew quadrupoles
 - → drive vertical dispersion bumps

Emittance and IBS

- MAX IV 3 GeV SR is IBS-limited!
- Damping wigglers reduce emittance $(B = 2.22 \text{ T}, \lambda = 80 \text{ mm}, L = 2 \text{ m})$
- DWs also increase energy spread \rightarrow reduce IBS contribution to ϵ
- Landau Cavities
 - → increase Touschek lifetime & reduce IBS contribution to ε

	ε_x [nm rad]	
	Without	With
	IBS	IBS
Bare lattice	0.326	0.453
Bare lattice with LC	0.326	0.372
Lattice with four PMDWs and LC	0.263	0.297
Lattice with four PMDWs, ten IVUs, and LC	0.201	0.231

