

MAX IV Storage Rings

Simon C. Leemann

May 9, 2011

MAX IV Facility

One size DOES NOT fit all!

- 3.4 GeV linac (SPF, FEL)
 ~ 300m
- 1.5 GeV SR (IR/UV) 12 DBAs $\varepsilon_x = 6 \text{ nm rad}$

3 GeV SR (X-ray)
20 MBAs
ε_x < 0.3 nm rad

MAX IV 3 GeV Multibend Achromat

- Many weakly bending cells
 - Iow emittance
- Keep compact (cost!)
 - ➡ strong and small multi-function magnets → integration
 - Narrow vacuum chamber
 - Distributed pumping
 - NEG-coated chambers
- I00 MHz rf system with 300 MHz harmonic system
 - stretch bunches
 - manage instabilities
 - excellent lifetime

Simon C. Leemann • May 9, 2011

MAX IV Integrated Magnet Design

MAX IV Integrated Magnet Design

MAX IV 3 GeV Multibend Achromat

- Many weakly bending cells
 - Iow emittance
- Keep compact (cost!)
 - ➡ strong and small multi-function magnets → integration
 - Narrow vacuum chamber
 - Distributed pumping
 - NEG-coated chambers
- I00 MHz rf system with 300 MHz harmonic system
 - stretch bunches
 - manage instabilities
 - excellent lifetime

Simon C. Leemann • May 9, 2011

MAX IV Vacuum System

MAX IV 3 GeV Multibend Achromat

- Many weakly bending cells
 - Iow emittance
- Keep compact (cost!)
 - ➡ strong and small multi-function magnets → integration
 - Narrow vacuum chamber
 - Distributed pumping
 - NEG-coated chambers
- I00 MHz rf system with 300 MHz harmonic system
 - stretch bunches
 - manage instabilities
 - excellent lifetime

Emittance determined by IBS and IDs

- Unique feature: lower emittance \rightarrow better lifetime
- MAX IV 3 GeV SR is IBS-limited! (LCs and IDs can mitigate)
- Since lattice equilibrium emittance is so low, IDs determine emittance

