Pulsed Multipole Injection in the MAX IV Storage Rings
MAX IV Injection Overview

• Full energy (underground) linac delivers top-up shots to two storage rings: 3 GeV storage ring and 1.5 GeV storage ring
MAX IV Injection Overview (cont.)

- Full energy (underground) linac delivers top-up shots to two storage rings: 3 GeV storage ring and 1.5 GeV storage ring
- Two dedicated vertical (achromatic) transfer lines
- 10 Hz injection rep rate
- Injection into rings via DC Lambertson septum
- Inject bunches with $\varepsilon_n = 10 \text{ mm mrad}$, $\sigma_\delta = 0.1\%$
MAX IV Injection Requirements

• Original design: conventional 4-kicker bump injection

• But worried about stored beam stability during top-up
 – 200 nm vertical stability requirement!

• Also worried about complexity
 – matching, synchronizing and aligning 4 kickers/pulsers to properly close bump
 – strong sextupoles & octupoles within bump: bump can only be properly closed for one energy and amplitude
 – 4 kickers and septum require lots of space
MAX IV Injection Requirements (cont.)

• Intrigued by KEK’s pioneering work on PQM and PSM
 – align only a single magnet to stored beam
 – synchronize only one pulser to injection
 – PSM field flat around stored beam
 ➡ minor perturbation of stored beam by PSM

PRST-AB 10, 123501 (2007)
PRST-AB 13, 020705 (2010)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic field at 15 mm</td>
<td>40 mT</td>
</tr>
<tr>
<td>Magnetic length</td>
<td>300 mm</td>
</tr>
<tr>
<td>Bore diameter</td>
<td>66 mm</td>
</tr>
<tr>
<td>Peak current</td>
<td>3000 A</td>
</tr>
<tr>
<td>Pulse length</td>
<td>1.2 / 2.4 μs</td>
</tr>
</tbody>
</table>
Pulsed Sextupole Injection for MAX IV

- Strong nonlinearities in MAX IV rings → derive injection scheme from tracking
 - optimization of where to put beam in septum and PSM in lattice

```
PRST-AB 15, 050705 (2012)
```

```
NIM-A 490, 592, 2002
NIM-A 547, 686, 2005
```
• Strong nonlinearities in MAX IV rings → derive injection scheme from tracking
 – optimization of where to put beam in septum and PSM in lattice
 – ideal kick strength to minimize injection amplitudes
Pulsed Sextupole Injection for MAX IV (cont.)

• Strong nonlinearities in MAX IV rings → derive injection scheme from tracking
 – optimization of where to put beam in septum and PSM in lattice
 – ideal kick strength to minimize injection amplitudes

PRST-AB 15, 050705 (2012)
Pulsed Sextupole Injection for MAX IV (cont.)

- Good tolerance to errors because of large ring acceptance
- PSM gradient not an issue because of low injected emittance
- But tolerances are tight
 - Requirement for low perturbation: excellent alignment
 - Alignment adjustment can be beam-based via orbit bump
 - Girder design to facilitate beam-based re-alignment of the PSM

\[\Delta x = \Delta y = 100 \, \mu m \]
Reference Design for a MAX IV PSM

- Initially, attempted a solid iron PSM following KEK design
 - symmetry required to minimize stored beam perturbation
 ➡ cannot accommodate for aspect ratio of BSC
 - 21 J stored energy
 - in 3 GeV ring: 3.5 us pulse
 - but in 1.5 GeV ring: 640 ns pulse
 ➡ requires 93 kV pulser voltage!

<table>
<thead>
<tr>
<th>Magnetic field at 4.7 mm</th>
<th>39 mT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic length</td>
<td>300 mm</td>
</tr>
<tr>
<td>Bore diameter</td>
<td>32 mm</td>
</tr>
<tr>
<td>Peak current</td>
<td>2125 A</td>
</tr>
<tr>
<td>Pulse length</td>
<td>3.5 μs</td>
</tr>
</tbody>
</table>
Reference Design for a MAX IV PSM (cont.)

- Short pulse duration leads to very large pulser voltage
 (320 ns revolution period in 1.5 GeV storage ring → 640 ns pulse duration)

- Two-turn injection relaxes requirements, but makes injection even more optics-dependent
A Better Idea: Nonlinear Injection Kicker

- Need to further reduce stored energy to get voltage down
- BESSY nonlinear injection kicker prototype
 - stripline design with low inductance
 - minimize stored beam perturbation (octupole-like around center)

Simon C. Leemann
Workshop on Diffraction Limited Storage Rings, SLAC, December 9-11, 2013
Adapting the BESSY Kicker to MAX IV

- BESSY kicker most efficient if maximum kick delivered at location of injected beam
 - In BESSY II this is at ≈ 11 mm, but in MAX IV this is at ≈ 5 mm
 - Maximum can be moved closer to stored beam if vertical separation between inner rods is reduced
Adapting the BESSY Kicker to MAX IV (cont.)

- BESSY kicker most efficient if maximum kick delivered at location of injected beam
 - In BESSY II this is at ≈ 11 mm, but in MAX IV this is at ≈ 5 mm
 - Maximum can be moved closer to stored beam if vertical separation between inner rods is reduced
 - In MAX IV cannot reduce vertical aperture that much

Simon C. Leemann
Workshop on Diffraction Limited Storage Rings, SLAC, December 9-11, 2013
Adapting the BESSY Kicker to MAX IV (cont.)

• But can inject on slope
 ➔ Sampling gradient is not a problem because of low emittance of injected beam from MAX IV linac

• Stored beam perturbation remains negligible (even with 5 μm Ti coating)
Adapting the BESSY Kicker to MAX IV (cont.)

- Initiated collaboration with SOLEIL and BESSY to build nonlinear injection kicker for both MAX IV storage rings as well as SOLEIL

300 mm air-cooled ceramic vessel with precision-machined grooves for Cu rods

42 mm x 8 mm (no synchrotron radiation on chamber)
Commissioning

• Pulsed multipole injection depends strongly on position & angle of injected beam in nonlinear kicker (kick scales $\approx x^3$)

• Commissioning new ring with a nonlinear kicker is not trivial
 ➞ use single dipole kicker close to septum for simple & robust injection during early commissioning

• Single dipole kicker can
 – inject on-axis
 – inject off-axis

 – allows for accumulation

• After commissioning will become our horizontal pinger

Simon C. Leemann
Workshop on Diffraction Limited Storage Rings, SLAC, December 9-11, 2013

NIM-A 693, 117, 2012
Injection — Lessons to be learned

• Our solution shoehorned into a previously designed conventional injection scheme with 4 dipole kickers
 – Septum installed at downstream end of injection straight
 – Our nonlinear kicker is in 2nd straight, after one full achromat
 → limits optics tuning and makes commissioning more difficult

• If we could do it from scratch: put it all into injection straight
 – septum at upstream end
 – injection kicker at downstream end (can inject at angle if necessary)
Injection — Lessons to be learned (cont.)

• Name of the game is low-emittance injection into large acceptance rings
 – Large acceptance ring means a ring with good DA
 – Low-emittance injection can be realized via
 • linac (costly if not otherwise required)
 • large circumference in-tunnel booster e.g. SLS (cheap and simple, yet reliable)
Injection — Lessons to be learned (cont.)

• For BESSY-type approach: need aggressive engineering!
 ➔ i.e. bring rods close to stored beam
 • need good coupling control
 • could be easier in cases where this is a retrofit (vertical acceptance well understood and prior operational experience with in-vacuum ID’s exists)

• On-axis vs. off-axis injection ➔ either way cannot relax DA requirements substantially
 – In MAX IV want ≈5% MA, but have ≈8 cm max dispersion
 – need ±4 mm horizontal acceptance to ensure sufficient MA
 – Horizontal DA required for off-axis injection is ≈5 mm
 ➔ only ≈1 mm to be gained!
Injection — Dreaming...

• For top-up what we really want is a fast dipole kicker
 – roughly 1–2 mrad kick
 – “fast” = 3 ns rise, 3 ns flat top, 3 ns fall
 • bunch by bunch injection, i.e. for each injection shot filling pattern monitor determines most depleted bucket ➔ inject into that bucket
 – this does not have to be swap-out injection!
 • we already showed that we can capture without kicking out stored beam
 • level of disturbance to users on the order of 1/h since only a single bunch is excited (e.g. 0.6% perturbation for MAX IV users)
 – this injection can be on or off axis
But in fact, the kickers wouldn’t have to be that fast...

- MAX IV linac can inject in trains of ten consecutive 100 MHz bunches @ 10 Hz
- If we have a “slower” kicker with
 - ≈ 50 ns rise time & ≈ 50 ns fall time
 - ≈ 100 ns flat-top (doesn’t have to be very “flat”)

\Rightarrow We can still apply “train-by-train” injection for 2/3 our buckets
 (i.e. 333 mA stored current without change to nominal single-bunch charge)
 - top-up disturbance to users on $\approx 9\%$ level