

Pulsed Multipole Injection in the MAX IV Storage Rings

MAX IV Injection Overview

 Full energy (underground) linac delivers top-up shots to two storage rings: 3 GeV storage ring and 1.5 GeV storage ring

MAX IV Injection Overview (cont.)

- Full energy (underground) linac delivers top-up shots to two storage rings: 3 GeV storage ring and 1.5 GeV storage ring
- Two dedicated vertical (achromatic) transfer lines
- 10 Hz injection rep rate
- Injection into rings via DC Lambertson septum
- Inject bunches with ε_n = 10 mm mrad, σ_δ = 0.1%

MAX IV Injection Requirements

Original design: conventional 4-kicker bump injection

- But worried about stored beam stability during top-up
 - 200 nm vertical stability requirement!
- Also worried about complexity
 - matching, synchronizing and aligning 4 kickers/pulsers to properly close bump
 - strong sextupoles & octupoles within bump: bump can only be properly closed for one energy and amplitude
 - 4 kickers and septum require lots of space

MAX IV Injection Requirements (cont.)

- Intrigued by KEK's pioneering work on PQM and PSM
 - align only a single magnet to stored beam
 - synchronize only one pulser to injection
 - PSM field flat around stored beam
 - minor perturbation of stored beam by PSM

Magnetic field at 15 mm	40 mT
Magnetic length	300 mm
Bore diameter	66 mm
Peak current	3000 A
Pulse length	1.2 / 2.4 µs

Pulsed Sextupole Injection for MAX IV

- Strong nonlinearities in MAX IV rings → derive injection
 scheme from tracking

 PRST-AB 15, 050705 (2012)
 - optimization of where to put beam in septum and PSM in lattice

Pulsed Sextupole Injection for MAX IV (cont.)

- Strong nonlinearities in MAX IV rings → derive injection
 scheme from tracking

 PRST-AB 15, 050705 (2012)
 - optimization of where to put beam in septum and PSM in lattice
 - ideal kick strength to minimize injection amplitudes

Pulsed Sextupole Injection for MAX IV (cont.)

- Strong nonlinearities in MAX IV rings → derive injection
 scheme from tracking

 PRST-AB 15, 050705 (2012)
 - optimization of where to put beam in septum and PSM in lattice
 - ideal kick strength to minimize injection amplitudes

Pulsed Sextupole Injection for MAX IV (cont.)

- Good tolerance to errors because of large ring acceptance
- PSM gradient not an issue because of low injected emittance
- But tolerances are tight
 - Requirement for low perturbation: excellent alignment
 - Alignment adjustment can be beam-based via orbit bump
 - Girder design to facilitate beam-based re-alignment of the PSM

PRST-AB **15**, 050705 (2012)

Reference Design for a MAX IV PSM

- Initially, attempted a solid iron PSM following KEK design
 - symmetry required to minimize stored beam perturbation
 - ⇒ cannot accommodate for aspect ratio of BSC

PAC'13, WEPSM05

- -21 J stored energy
- in 3 GeV ring: 3.5 us pulse
- but in 1.5 GeV ring: 640 ns pulse
- → requires 93 kV pulser voltage!

Magnetic field at 4.7 mm	39 mT
Magnetic length	300 mm
Bore diameter	32 mm
Peak current	2125 A
Pulse length	3.5 µs

Reference Design for a MAX IV PSM (cont.)

• Short pulse duration leads to very large pulser voltage (320 ns revolution period in 1.5 GeV storage ring → 640 ns pulse duration)

• Two-turn injection relaxes requirements, but makes injection even more optics-dependent

Single-turn injection

A Better Idea: Nonlinear Injection Kicker

- Need to further reduce stored energy to get voltage down
- BESSY nonlinear injection kicker prototype
 - stripline design with low inductance
 - minimize stored beam perturbation (octupole-like around center)

Adapting the BESSY Kicker to MAX IV

- BESSY kicker most efficient if maximum kick delivered at location of injected beam
 - In BESSY II this is at ≈11 mm, but in MAX IV this is at ≈5 mm
 - Maximum can be moved closer to stored beam if vertical separation between inner rods is reduced

Adapting the BESSY Kicker to MAX IV (cont.)

- BESSY kicker most efficient if maximum kick delivered at location of injected beam
 - In BESSY II this is at ≈11 mm, but in MAX IV this is at ≈5 mm
 - Maximum can be moved closer to stored beam if vertical separation between inner rods is reduced
 - In MAX IV cannot reduce vertical aperture that much

PAC'13, WEPSM05

Adapting the BESSY Kicker to MAX IV (cont.)

- But can inject on slope
 - → Sampling gradient is not a problem because of low emittance of injected beam from MAX IV linac

Stored beam perturbation remains negligible

(even with 5 μm Ti coating)

PAC'13, WEPSM05

Adapting the BESSY Kicker to MAX IV (cont.)

→ Initiated collaboration with SOLEIL and BESSY to build nonlinear injection kicker for both MAX IV storage rings as well as SOLEIL

Commissioning

- Pulsed multipole injection depends strongly on position & angle of injected beam in nonlinear kicker (kick scales ≈x³)
- Commissioning new ring with a nonlinear kicker is not trivial
 - → use single dipole kicker close to septum for simple & robust injection during early commissioning
 NIM-A 693, 117, 2012

After commissioning will become our horizontal pinger

Injection — Lessons to be learned

- Our solution shoehorned into a previously designed conventional injection scheme with 4 dipole kickers
 - Septum installed at downstream end of injection straight
 - Our nonlinear kicker is in 2nd straight, after one full achromat
 - → limits optics tuning and makes commissioning more difficult
- If we could do it from scratch: put it all into injection straight
 - septum at upstream end
 - injection kicker at downstream end (can inject at angle if necessary)

Injection — Lessons to be learned (cont.)

- Name of the game is low-emittance injection into large acceptance rings
 - Large acceptance ring means a ring with good DA
 - Low-emittance injection can be realized via
 - linac (costly if not otherwise required)
 - large circumference in-tunnel booster e.g. SLS (cheap and simple, yet reliable)

Injection — Lessons to be learned (cont.)

- For BESSY-type approach: need aggressive engineering!
 - →i.e. bring rods close to stored beam
 - need good coupling control
 - could be easier in cases where this is a retrofit (vertical acceptance well understood and prior operational experience with in-vacuum ID's exists)
- On-axis vs. off-axis injection → either way cannot relax DA requirements substantially
 - In MAX IV want ≈5% MA, but have ≈8 cm max dispersion
 - need ±4 mm horizontal acceptance to ensure sufficient MA
 - Horizontal DA required for off-axis injection is ≈5 mm
 - → only ≈1 mm to be gained!

Injection — Dreaming...

- For top-up what we really want is a fast dipole kicker
 - roughly 1–2 mrad kick
 - "fast" = 3 ns rise, 3 ns flat top, 3 ns fall
 - bunch by bunch injection, i.e. for each injection shot filling pattern monitor determines most depleted bucket → inject into that bucket
 - this does not have to be swap-out injection!

NIM-A **693**, 117, 2012

- we already showed that we can capture without kicking out stored beam
- level of disturbance to users on the order of 1/h since only a single bunch is excited (e.g. 0.6% perturbation for MAX IV users)
- this injection can be on or off axis

21/22

Injection — Dreaming... (cont.)

- But in fact, the kickers wouldn't have to be that fast...
 - MAX IV linac can inject in trains of ten consecutive 100 MHz bunches @ 10 Hz
 - If we have a "slower" kicker with
 - ≈50 ns rise time & ≈50 ns fall time
 - ≈100 ns flat-top (doesn't have to be very "flat")
 - → We can still apply "train-by-train" injection for 2/3 our buckets (i.e. 333 mA stored current without change to nominal single-bunch charge)
 - top-up disturbance to users on ≈9% level

