

MAX IV 3 GeV Storage Ring Accelerator Physics Issues

Simon C. Leemann Workshop on Diffraction Limited Storage Rings, SLAC, December 9-11, 2013

MAX IV Facility Overview

One size *does not* fit all! Instead, different sources to serve different users.

Short pulses:
3.5 GeV linac & SPF
100 Hz, ~30 fs,
full-energy injector for rings
FEL upgrade option

High average brightness:

1.5 GeV storage ring
 DBA lattice, 6 nm rad,
 IR & UV users

3 GeV storage ring

MBA lattice, ~300 pm rad, x-ray users

MAX IV 3 GeV Storage Ring — Today vs. 2016

Simon C. Leemann Workshop on Diffraction Limited Storage Rings, SLAC, December 9-11, 2013

SNØHET

MAX IV 3 GeV Storage Ring is Based on a Multibend Achromat Lattice

- 3 GeV, 528 m circumference, 500 mA with top-up
- 20 achromats: 19 user straights (4.6 m), 40 short straights (1.3 m) for RF & diagnostics
- 7-bend achromat: 5 unit cells & 2 matching cells
- 320 pm rad bare lattice emittance (vertical emittance adjusted to 1 Å diffraction limit)

MAX IV 3 GeV Storage Ring is Based on a Multibend Achromat Lattice (cont.)

- Gradient dipoles flanked by sextupole pairs
- Sextupole insertions in focusing quadrupoles
- Dedicated octupoles
- 8 cm peak dispersion
- $v_x = 42.20$, $v_y = 16.28$ $\beta_x^* = 9 \text{ m}$, $\beta_y^* = 2 \text{ m}$
- $\sigma_x^* = 54 \,\mu m$ $\sigma_y^* = 2-4 \,\mu m$

Making a MBA lattice work

 Compact, strong focusing optics → tightly spaced short magnets with small bore → combined-function, integrated magnet design
 Magnet Block

 Small magnet bore, short gaps between magnets → narrow chambers without space for lumped absorbers → NEG-coated Cu with cooling channel

See presentations on magnet and vacuum technology

Making a MBA lattice work (cont.)

 Strong focusing & weak bends → low dispersion → strong chromatic sextupoles → intricate nonlinear optics for large DA and MA (needs to remain stable under influence of IDs and errors!)

Making a MBA lattice work (cont.)

 Many strong chromatic sextupoles → correct linear chromaticity and tailor its higher orders → use additional sextupoles to minimize first-order RDTs (low because of choice of phase

 Use achromatic octupoles to efficiently tailor ADTS to first order → minimize tune footprint

Resulting Performance

- Overall tune footprint becomes very compact both on and off momentum
 - Large on-momentum DA ensures good injection efficiency (see presentation on injection)
 - →Large off-momentum DA ensures good lattice MA
- MA and DA stable under influence of imperfections and ID's

Workshop on Diffraction Limited Storage Rings, SLAC, December 9-11, 2013

Resulting Performance (cont.)

• Example: 10 in-vac. undulators, gaps fully closed, ring optics matched, magnet and alignment errors included (20 seeds)

Resulting Performance (cont.)

- Together with 100 MHz RF system this ensures good beam lifetime
 - for 5% MA: 1.1 MV (100 MHz system) vs. 3.7 MV (500 MHz system)
 → significant reduction of Cu losses
 - 100 MHz system is inexpensive (don't need klystrons!)
 - 100 MHz system generates long bunches (11.3 mm vs. 2.7 mm) with large separation (3 m vs. 0.6 m) → mitigates collective effects
- Large MA and long bunches give excellent Touschek lifetime
 - LC's (3rd harm.) → $\sigma_s \approx 50$ mm → Touschek >25 h → >10 h overall
- Ample skew quadrupole windings allow brightness optimization via adjustment of emittance coupling

PAC'**13**, MOPHO05

A few interesting properties of ultralowemittance rings

- Emittance varies during user operation
 - low radiated power from dipoles
 - equilibrium emittance determined by ID's and their gap settings
 - are damping wigglers required to hold emittance constant?

A few interesting properties of ultralowemittance rings (cont.)

- Reducing the transverse emittance (DW's and/or user ID's) increases Touschek lifetime
- Add more DW's and ID's to get lower emittance and better lifetime?
 - Requires lots of RF power
 - Inefficient? Will overall photon brightness increase as energy spread increases with additional radiated power?

A few interesting properties of ultralowemittance rings (cont.) $\frac{3}{2}$ 140 $\frac{140}{120}$ $\frac{140}{120}$ $\frac{140}{120}$

- IBS is very strong at high current
 - Raise energy?
 (6 GeV in ESRF Upgrade, SPring8-II, APS Upgrade)
 - IBS blows up beam's 6D emittance
 - good for lifetime, bad for brightness (transverse emittance, energy spread)
 - compounded by low emittance coupling → round beams in DLSR's?
 - Trade-off: stored current vs. acceptable emittance increase

A few interesting properties of ultralowemittance rings (cont.)

- IBS is very strong at high
 - Raise energy? (6 GeV in ESRF Upgrade, SPring8-
 - IBS blows up beam's 6D
 - good for lifetime, bad for l
 - compounded by low emitt
 - Trade-off: stored current
- Alternative: increase longitudinal emittance

- DW's increase energy spread (brightness issue)
- LC's increase bunch length → MAX IV choice (since we have dedicated SPF)

Latest Developments

- Improve optics without requiring new magnets or PS's
- Adjust focusing quads in arc & doublets in straights
 - Increase horizontal focusing to lower emittance: 328 → 270 pm rad

Latest Developments (cont.)

- Improve optics without requiring new magnets or PS's
- Adjust focusing quads in arc & doublets in straights
 - Increase horizontal focusing to lower emittance: 328 → 270 pm rad
 - Decrease $\beta_{x,y}$ in straights to better match intrinsic photon beam

Latest Developments (cont.)

- Improve optics without requiring new magnets or PS's
- Adjust focusing quads in arc & doublets in straights
 - Increase horizontal focusing to lower emittance: 328 → 270 pm rad
 - Decrease $\beta_{x,y}$ in straights to better match intrinsic photon beam

→ Emittance reduced by \approx 18% but brightness at 1 Å increases by \approx 50% (because of improved matching)

Latest Developments (cont.)

- Under influence of DW's and/or user ID's emittance is expected to be lowered to
 - either ≈ 200 pm rad at 500 mA stored beam
 - or \approx 150 pm rad by reducing stored beam current to 100 mA
- This should further increase brightness, but can we reach factor 2 overall compared to baseline design?
- Worry about energy spread increase when radiating lots of power in DW's or user ID's
 - Fortunately, IBS blows up longitudinal emittance
 - Can energy spread blow-up be mitigated via bunch lengthening?
 Ongoing work...

