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Although octupoles, decapoles, and longitudinal gradient bending magnets (LGB) have been studied

for many years, they are not usually included in light source lattices. They can, however, be beneficial in

order to realize ultralow emittance and attain sufficient dynamic aperture. We present methods for

achieving ultralow emittance and discuss optimization of the nonlinear dynamics with multipoles. We

demonstrate how control of amplitude-dependent tune shift makes octupoles a powerful tool for dynamic

aperture optimization. Control of higher-order chromaticity by octupoles and decapoles is straightfor-

ward; however, since this turns out to be not quite as efficient in high-brightness lattices with low arc

dispersion, we apply it to a conventional lattice to demonstrate the potential. This paper also illustrates

how high-field LGBs can be used to build a compact, bright hard x-ray source. Finally, we demonstrate in

detail the application of octupoles as integral components of the MAX IV 3 GeV storage ring lattice.
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I. INTRODUCTION

Despite the rise of free-electron lasers, storage ring-
based light sources remain the workhorses for research
with synchrotron radiation. A new generation of rings
(PETRA III [1], NSLS-II [2], MAX IV [3]) is characterized
by a natural emittance � 1 nm rad and significant impact
of insertion devices on the radiation equilibrium. Lattices
for an ‘‘ultimate light source’’ with emittance in the pm rad
range providing fully diffraction-limited photon beams are
being studied (see, for example, [4–8]).

In this paper we investigate concepts for ultralow-
emittance lattices and discuss the use of magnets which,
although known and used in some high-energy physics
lattices, are not yet common in light sources, namely,
dipoles with longitudinal gradients, octupoles, and decap-
oles. The next section gives an overview of lattice design
efforts to reach minimum emittance. The following section
then introduces higher-order magnets used to optimize
nonlinear beam dynamics in ultralow-emittance lattices.
Finally, three lattices will be presented as case studies to
demonstrate the benefits of using such magnets.

II. LOW-EMITTANCE LATTICES

The natural horizontal equilibrium emittance of a flat
storage ring lattice [9] in practical units is

�xo½nmrad�¼1470ðE½GeV�Þ2 I5
JxI2

withJx¼1�I4
I2

(1)

and the radiation integrals

I2 ¼
I

h2ds I4 ¼
I

�ðh3 þ 2hb2Þds

I5 ¼
I

h3Hds
(2)

with h ¼ 1=� the orbit curvature, b2½>0� the (horizon-
tally) focusing gradient, andH the dispersion’s emittance,

H ¼ �x�
2 þ 2�x��

0 þ �x�
02; (3)

and �, �, � the Twiss parameters and �, �0 the dispersion
and its slope.

A. Theoretical minimum emittance

Two cases for calculation of the theoretical minimum
emittance (TME) of a bending magnet of homogenous
curvature h are usually considered (cf. Fig. 1): the center
bending magnet (CBM) located at the center of a periodic
cell as used inside multibend achromats (MBA), and the
end bending magnet (EBM) where the dispersion is zero on
one end as used in double bend achromats (DBA) or at the
ends of an MBA facing the adjacent, dispersion-free
straights [10]. Assuming an isomagnetic lattice, i.e., all
bending magnets are of same type, with constant curvature
h and a bending angle � ¼ hL, the TME is obtained by
solving integral I5 over H from Eqs. (2) and (3) and
minimizing the result with respect to the values of �x,
�x, �, and �0 at some point [11–15]—cf. Appendix A
for details. For small bending angles (�< 20�) the
emittance can be written as
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�xo½pm rad� ¼ 7:8

Jx
ðE½GeV�Þ2ð�½��Þ3 F

12
ffiffiffiffiffiffi
15

p ; (4)

where the factor F depends on the shape of the horizontal
beta function and dispersion inside the bend. In the CBM
the beam has a focus (�xo ¼ �0

o ¼ 0Þ at the magnet center
and the values of the beta function and dispersion at that
focus have to be adjusted. For the EBM dispersion is zero
at the entrance edge and thus fixed, then the distance l of
the focus (where �x ¼ 0) from the entrance edge and the
beta function at that focus have to be adjusted. This results
in the following matching conditions and TME values:

CBM: �min
xo ¼ 1

2
ffiffiffiffiffiffi
15

p L �min
o ¼ hL2

24
Fmin ¼ 1

EBM: �min
xo ¼

ffiffiffiffiffiffiffiffi
3

320

s
L lmin ¼ 3

8
L Fmin ¼ 3:

(5)

For deviations from the ideal matching conditions, ex-
pressed by parameters

b ¼ �xo

�min
xo

and
d ¼ �o=�

min
o ðCBMÞ

� ¼ l=L ðEBMÞ (6)

ellipse equations are obtained [16] (cf. Appendix A) and
shown in Fig. 2:

CBM: 5
4ðd� 1Þ2 þ ðb� FÞ2 ¼ F2 � 1

EBM: 15ð8�� 3Þ2 þ ð3b� FÞ2 ¼ F2 � 9:
(7)

The cell phase advance� can be calculated solely from the
constraints that the slopes of dispersion and beta function
have to disappear at the end points of the periodic cell ‘‘P’’
(CBM) or at the point of mirror symmetry ‘‘M’’ (EBM)
(cf. Fig. 1). In the EBM case, however, the optics from the
straight center ‘‘S’’ to the bending magnet is not deter-
mined, therefore we consider only the phase advance

between point ‘‘0’’ and its mirror image, whereas it is for
the whole cell in the CBM case:

CBM: tan
�

2
¼ 6ffiffiffiffiffiffi

15
p b

ðd� 3Þ
EBM: tan

�

2
¼ 3ffiffiffiffiffiffi

15
p b

ð8�� 4Þ :
(8)

It is interesting to note that fulfilling the TME conditions in
both cases results in a phase advance of 284.5�, and thus an
additional focus at point ‘‘P’’ or ‘‘M’’. The DBA of the
ELETTRA storage ring shown in Fig. 3 is nearest to the
TME condition with F ¼ 4:1 and exhibits the additional
focus to realize a phase advance of � ¼ 216� which
requires additional drift spaces [17]. Because of limited
circumference most light source lattices therefore use more
relaxed optics with �< 180� and correspondingly larger
emittances.

FIG. 2. Emittance of center (top) and end (bottom) bending
magnets: Diamond symbols mark the TME conditions for
Fmin ¼ 1 (CBM) and Fmin ¼ 3 (EBM). The elliptic isoemittance
contours correspond to integer values up to F ¼ 12, where F ¼
4; 8; 12 are solid, others dotted. The solid lines from upper to
lower correspond to cell phase advances of ð3; 4; 5; 6Þ � 45�, the
dashed line to 284.5� as required in both cases to fulfill the TME
condition.

FIG. 1. Center bend and end bend cells.
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B. Gradient bends

Increasing the horizontal damping partition number Jx
has been done in many places (e.g. ALS [18], ELETTRA
[17], ALBA [19]) to reduce the emittance at the expense
of increased energy spread. This is achieved by introducing
a vertically focusing gradient in the dipole magnets
[cf. Eqs. (1) and (2)].

The reduction of the field at the orbit leads to longer
bending magnets, but since the gradient also allows one to
save vertically focusing quadrupoles, the net result is a
reduction of machine circumference.

Beyond that, the lower field and correspondingly lower
radiated power leads to a relative increase of the insertion
devices’ contribution to the radiation equilibrium and thus
supports further reduction of emittance by dedicated damp-
ing wigglers and to some extent also by the users’ insertion
devices.

C. Nondispersive straights

Historically, dedicated light sources were planned with
nondispersive straights in order to avoid synchrobetatron
oscillations from cavities which were also located in
straights and to minimize the impact of any longitudinal
noise, i.e., rf jitter on the horizontal beam profile.

After both problems could be controlled by other means,
mainly development of higher order mode (HOM) free or
HOM damped cavities, and improvements of rf amplifiers,
DBA lattices were tuned to allow dispersion in the straights
in order to reduce the emittance, i.e., moving from the
EBM towards a CBM optics (e.g. ESRF [20]) or were
already designed with dispersive straights (e.g. SOLEIL
[21]). However, since the dispersion contributes to beam
width and divergence, the increased effective emittance as
given by Eq. (B3) in Appendix B ultimately determines the
brightness.

In very low (< 1 nm rad) emittance lattices (e.g.
NSLS-II, MAX IV) insertion devices contribute signifi-
cantly to the equilibrium emittance, leading to a further

reduction only if the straight section dispersion is zero or
very small, otherwise the emittance may easily increase;
furthermore, the dispersion contribution to the effective
emittance could become dominant. Therefore, ring-based
light sources of the latest generation always have non-
dispersive straights.

D. Longitudinal gradient bends

In a CBM (cf. Fig. 1) the beta function and dispersion as
well as H [cf. Eq. (3)] grow from the magnet center
towards the edges. Thus, a homogenous field and curvature
h ¼ B=ðB�Þ is obviously not the optimum solution in
order to minimize the radiation integral I5 and the emit-
tance [cf. Eqs. (1) and (2)]. Instead, introducing a longitu-
dinal field gradient for highest curvature at the bend center
and lowest at the edges while keeping the bending angle

� ¼
Z
L
hðsÞds (9)

constant, may compensate for the variation of H and
provide an emittance lower than the TME. Finding a
function hðsÞ to minimize Eq. (1) under the constraint of
Eq. (9) represents an isoperimetric variational problem,
which however cannot be solved analytically in general.
Instead, numerical minimization [22] or semianalytical
minimization assuming special functions for hðsÞ [23,24]
have been carried out. Here, we want to briefly investigate
two methods to build a lattice cell based on an LGB.
(i) Starting at the center of a CBM, we assume a maxi-

mum field value and set values for �x and �, which will
give the initial value H o. Propagating the parameters
through a slice of constant field and length �s will give
another, usually a larger value of H 1 at the end of the
slice. So, the field of the next slice is scaled down by

B1 ¼ Bo

ffiffiffiffiffiffiffiffiffi
H o

H 1

3

s

and so on, in order to get the same contribution to I5 from
each slice. In this way the calculation continues until the
desired angle of deflection of the LGB has been reached.
Since the field will become lower when moving from the

center to the edge, there is room to introduce a gradient of
positive or negative sign. Assuming a magnet pole half
width w with a maximum pole-tip field Bmax, the available
gradient is thus limited by

jBðsÞ0j � min

�
Bmax � BðsÞ

w
;
BðsÞ
w

�
:

The second limitation corresponds to a half-quadrupole of
radius w as a limiting case: for B0 >B=w the bending
magnet would become an off-centered quadrupole and
require four poles.
An example is shown in Fig. 4: The field decay from

center to edge compensates for the growth of H . At
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FIG. 3. The double bend achromat of the ELETTRA storage
ring.
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2.4 GeV, a periodic cell incorporating this LGB, as shown
in Fig. 5 (top), would provide 10� of deflection at a length
of 4.1 m, and, using a damping partition of Jx ¼ 1:9, an
emittance of �xo ¼ 0:7 nm rad, which is about 30% lower
than the TME of a 10� CBM. Chromaticity corrections
with sextupole components incorporated in the LGB and
the end quads results in large dynamic aperture (DA) of the
ideal cell.

However, the disadvantage of this LGB is its length, the
complex pole shape, and the limited tunability and flexi-
bility. The same space could as well accommodate two
cells using standard magnets as shown in Fig. 5 (bottom),
which can easily be tuned to provide exactly the same or
even better performance, because the factor 8 gained in
emittance by just splitting the center bend into two bends
provides leeway to relax and tune the optics. So, this LGB
concept appears inferior to a multibend achromat (MBA)
scheme.

(ii) A more promising method to exploit an LGB cell is
based on matching optical functions to a superbend, which
has a longitudinal gradient by nature: a superbend has a

central high-field region for production of hard x rays, and
lower field elsewhere to keep the radiation losses low. For
example, the superbends of the ALS have a longitudinal
field profile which can be roughly approximated by a
Gaussian of about 5.7 T peak and 0.18 m FWHM [25]
(cf. Fig. 15 in Sec. IVB). Using a superbend as a CBM, the
center beta function and dispersion for lowest emittance
can be found numerically or even analytically for further
simplified cases, and emittance ellipses analogous to the
ones shown in Fig. 2 and cell phase advances can be
calculated [24]. The resulting values of beta function and
dispersion, however, scale inversely with the central field
strength, i.e., they become very small. The ALS superbend
would provide an emittance as low as 40% of the TME
of a homogenous CBM of same deflection angle for
�xo � 2:5 cm,�o � 0:8 mm at its center. This sharp focus
leads to a large beta function at the adjacent quadrupoles
and thus to large chromaticities and subsequent DA
problems.
Therefore, the LGB cell would not be tuned for ultimate

low emittance, but to an emittance which is comparable to
the TME of a homogenous CBM. In case of the ALS
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FIG. 5. Periodic cell incorporating a longitudinal gradient
bend (top) and a double cell with homogenous bends for com-
parison (bottom). Both cells have identical length, angle, Jx, and
emittance.

FIG. 4. Example for a longitudinal gradient bending magnet:
The upper plot shows, from center to edge, the optical functions
of the LGB, �x in blue, �y in red, � in green. The lower plot

shows the field B (blue) and the additional field due to the
gradient, wB0 (red) for each slice of the magnet. The function
H is shown in green. The rectangle at the right is a quadrupole
to perform the periodic matching. Initial beam parameters are
displayed in the upper plot. The attenuation factors (AF;D)

indicate how much of the available gradient was used horizon-
tally and vertically.

S. C. LEEMANN AND A. STREUN Phys. Rev. ST Accel. Beams 14, 030701 (2011)

030701-4



superbend, this would be the case for a 5 times larger value
of �xo along with substantially relaxed optics as well as
reduced cell phase advance [also cf. Fig. 2 (top)].

A more detailed elaboration of this concept is given in
Sec. IVB presenting a compact brilliant hard x-ray source
based on super-LGB cells.

E. Multibend achromats

Low-emittance lattices using either LGBs or homoge-
nous bending magnets in TME mode will require much
space: the TME optics requires ‘‘empty’’ cells alternating
with the bending magnets to accommodate the additional
focus required for matching, and since these empty cells
have high dispersion, they cannot be used for undulators. A
normal-conducting LGB will be very long to match the
decreasing field strength to the increasing H function
(superconducting LGB lattices however could be rather
compact).

For a given circumference of the lattice, the multibend
achromat (MBA) lattice is obtained as a third solution by
virtually dividing each bending magnet in two, using the
space which was used for empty cells in the TME case,
and decreasing field in the LGB case for another cell,
thus exploiting the cubic dependence of emittance on
bending angle per magnet. The factor 8 in emittance
thus gained may be invested to allow for a very moderate
phase advance per cell (� 100�, cf. Fig. 2 top) and
realize a rather relaxed low-emittance lattice with mod-
erate chromaticities and hence alleviated DA optimiza-
tion [26–30].

A small bending angle per magnet and short cells result
in small peak values of dispersion and horizontal beta
function and thus in small horizontal apertures, given by

ax � maxf2�ðsÞ	acc;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ax�ðsÞ

q
g (10)

with Ax the horizontal acceptance, i.e., the betatron ampli-
tude required to capture the injected beam, and 	acc the
momentum acceptance (MA) required to provide sufficient
Touschek lifetime. The vertical aperture is small anyway
due to the presence of undulators with very narrow gaps.
Small magnet apertures, however, allow high multipole
gradients and hence compact magnets which further sup-
ports a compact arc [29,30].

A similar concept had been developed earlier guided
by the concept to distribute the bending around the
machine and combining dipolar, quadrupolar, and sextu-
polar fields in the same magnets [31]. The idea was to
compensate the chromaticity where it is created in order
to minimize the chromatic beta beat. These lattices were
found to provide large DA and very large MA.
Application to booster synchrotrons [32] resulted in eco-
nomic machines providing low emittance and low power
consumption due to the low stored field energy of the
small magnets. Booster synchrotrons of this type are

perfectly suited to top-up operation and operate success-
fully in several places [33–35].
So, following the MBA approach, slim and rather inex-

pensive lattices can be built which either become very
compact or allow very small emittance. However, two
problems have to be solved: (i) Small apertures require a
small emittance of the injected beam which requires
injection from either a linear accelerator (MAX IV) or
from a low-emittance synchrotron based on the same MBA
concept [36]. (ii) The small peak dispersion results in high
gradients of the sextupoles used for chromaticity compen-
sation. This is not much of a complication for the magnet
design, since the small aperture allows high gradients, but
it leads to challenges of nonlinear dynamics optimization
even for a rather relaxed lattice, which will be discussed in
the next section.
Nevertheless, we believe the MBA approach as applied

to the design of MAX IV [3] to be superior to TME and
LGB for building an ultralow-emittance lattice within a
limited circumference.

III. OPTIMIZING THE NONLINEAR DYNAMICS

Usually ultralow-emittance lattices have many strong
quadrupole magnets in order to provide a horizontal focus
in each dipole. A characteristic of these strong focusing
lattices is the large negative natural chromaticity which
needs to be corrected with strong sextupoles. Beside the
chromatic sextupoles used to tune the two first-order chro-
matic terms (h11001 driving 
x, h00111 driving 
y), harmonic

sextupoles are introduced to minimize the remaining first-
order sextupole driving terms: three chromatic terms
(second-order dispersion @�x=@	 and momentum-
dependent beta beat @�x;y=@	) and five geometric terms

(driving the resonances Qx, 3Qx, and Qx � 2Qy). Properly

tuning these terms alone will however not ensure large DA
and MA: second-order effects including amplitude-
dependent tune shifts (@�x;y=@Jx;y) and second-order chro-

maticity (
ð2Þ
x;y ¼ @2�x;y=2@	

2), along with even higher-

order effects, shape the tune footprint and thus determine
the dynamic performance of the lattice.
The systematic nonlinear dynamics approach is to install

sextupoles at locations separated by suitable betatron
phases and adjust the strengths of the different sextupole
families in such a way as to correct chromatic behavior
while minimizing resonance driving terms [37,38]. Ideal
placement is however often not possible leading to in-
creased required sextupole strength and degeneration of
driving terms.
In addition, the weak dispersion of low-emittance latti-

ces requires very strong sextupole magnets. Adjusting
amplitude-dependent tune shifts (ADTS) and/or second-
order chromaticities requires even more sextupole strength
because these corrections are only applied by the sextu-
poles in second order. This results in a situation where
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many very strong sextupoles have to be installed to keep
linear chromaticity and first-order resonance driving terms
in check. Even if the applied sextupole strengths are ad-
justed in such a way that resonance driving terms are well
compensated in the ideal bare lattice, this is a complicated
and very delicate balance that is easily disturbed by
insertion devices, alignment errors, and higher-order
multipoles that all exist in real light source storage rings.
An example for such a situation will be given in Sec. IVA
where a modern ultralow-emittance storage ring design
reached a dynamic performance limit due to the unavoid-
able trade-off between strength/number of installed sextu-
poles and desired DA/MA.

One possible remedy for this problem is—although not
yet common in light sources—the use of higher-order
magnets such as octupoles and decapoles where ADTS
and higher-order chromatic behavior are manipulated to
first order [39]. If installed at the proper locations
(cf. below) octupole and decapole magnets can be operated
at comparably low strength yet still allow sufficient com-
pensation of sextupole effects. In addition, the freedom to
choose magnitude and direction of tune shifts in phase
space opens up the interesting possibility of tailoring dy-
namic behavior of a lattice [40,41] to best suit its resonance
environment in phase space: ADTS can be strongly sup-
pressed so the tune remains close to the working point even
for large excursions from the design orbit (for example,
after injection); quadratic and cubic chromaticities can be
shaped in such a way that chromatic tune shifts are
‘‘wrapped up’’ around the design working point thus avoid-
ing resonance crossing even for severe off-momentum
particles (for example, in extreme Touschek scattering
events).

This is an intriguing approach because it relieves lattice
designers of the constraint to keep sextupoles weak in
order not to generate large higher-order tune shifts. If
octupoles and decapoles are available, the lattice designer
can adjust sextupoles mainly for first-order terms while the
weak octupoles and decapoles are sufficient to compensate
the higher-order sextupole terms. As long as the octupoles
and decapoles remain comparably weak, they do not drive
strong higher-order terms which would force lattice
designers into a run-away cycle of even higher-order
compensation.

A. Octupoles

The effect of inserting an octupole in a bare sextupole
lattice can be expressed by evaluating the octupole
Hamiltonian and including off-momentum particles as a
perturbation. This derivation is shown in Appendix C. The
resulting Hamiltonian can be expressed in the resonance
basis [cf. Eq. (C10)] which allows immediate identification
of the octupolar effects.

Because the five chromatic and amplitude-dependent
tune shifts in the first-order octupole Hamiltonian

[cf. Eqs. (C18)–(C21)] are determined solely by the
octupole strength and the optical functions at the loca-
tion of the octupole, it is straightforward to use an
octupole to compensate the tune shifts resulting as
second-order effects of a bare sextupole lattice. Define
a vector containing amplitude-dependent and second-
order chromatic tune shifts:

~	� ¼

@��x=@Jx

@��y=@Jy

@��x=@Jy

@2��x=@	
2

@2��y=@	
2

0
BBBBBBBB@

1
CCCCCCCCA
: (11)

Note that this vector is nonzero even for a bare sextupole
lattice without any octupoles as a result of higher-order
effects of the sextupoles. In fact, the chromatic terms are
already nonzero for a bare quadrupole lattice [37]. Tune
shifts resulting from octupoles in the lattice can then be
expressed with the simple vector equation,

	 ~�oct ¼ Boct
~b4; (12)

where ~b4 is a vector with the total octupole strengths for
each octupole family j 2 1; . . . ; Noct and Boct is 5� Noct

matrix that contains the optical functions evaluated at the
locations of the octupoles (as derived in Appendix C):

Boct ¼ 3

8�

ð�xÞ21 	 	 	 ð�xÞ2Noct

�2ð�x�yÞ1 	 	 	 �2ð�x�yÞNoct

ð�yÞ21 	 	 	 ð�yÞ2Noct

4ð�2�xÞ1 	 	 	 4ð�2�xÞNoct

�4ð�2�yÞ1 	 	 	 �4ð�2�yÞNoct

0
BBBBBBBBB@

1
CCCCCCCCCA
: (13)

Equation (12) is a linear system which can be inverted so

an octupole setting ~b4 is found that cancels the tune shifts
of the bare sextupole lattice 	 ~�. Unless five octupole
families are used, Boct is not a square matrix and the linear
system has to be solved using pseudoinversion (e.g. sin-
gular value decomposition). If fewer than five families are
available, the resulting tune shift 	 ~� will be minimized; if
more than five families are used the tune shifts can be
canceled exactly, however, using the minimum total octu-

pole strength k ~b4k. Because of higher-order effects over
which one lacks direct control, it is often not desirable to
suppress first-order ADTS entirely. Instead, nonzero values
are chosen in order to minimize the resulting overall ADTS
including higher orders over a certain range of interest (for
example, within the physical aperture). Examples for such
an optimization will be presented in Secs. IVA and IVB.
In order to use octupoles efficiently, they have to be

placed properly with respect to the optical functions �x;y

and �. In mathematical terms the inversion of Eq. (12)
requires the matrix Boct to have a rank of 5. In practical
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terms it can be understood that a chromatic octupole family
j needs nonzero dispersion �j � 0 in order to counteract

the second-order chromaticity; in fact, ensuring these octu-
poles are installed at locations where �j is very large

results in lower required octupole strength. Likewise an
octupole family intended to correct horizontal (or vertical)
tune shifts needs to be installed at a location where
�x 
 �y (or �y 
 �x). For the case of the coupling

term @��x=@Jy ¼ @��y=@Jx an ideal location of the fam-

ily would be where �x � �y. Making sure placement of

the octupoles is chosen properly increases the leverage of
each octupole family to fight a specific driving term. An
interesting case to consider is when octupoles used to fight
ADTS see large dispersion. This can create large chromatic
tune shifts which then have to be counteracted again by the
chromatic octupoles. Ideally, one would therefore choose
dispersion-free locations for the placement of the octupole
families used to counteract ADTS. This separation of
function among different octupole families helps to ensure
the resulting octupole corrections strengths remain low.

B. Decapoles

Decapoles can be treated analogously to octupoles. The
decapole Hamiltonian has been expanded in Appendix D.
It contains five terms that do not carry phases and therefore
drive tune shifts. These terms are listed in Eqs. (D4)–(D7).
Of practical interest is the use of decapoles to adjust third-

order chromaticity 
ð3Þ
x;y in order to increase MA. This is

especially important if suppression of coupled bunch in-
stabilities enforces large positive values of linear chro-
maticity. In this case, introducing negative third-order
chromaticity can reduce the chromatic tune footprint in
order to avoid resonance crossings and thus increase the
lattice MA.

For this purpose an approach similar to Eq. (12) is taken:
the linear system

~
 ð3Þ ¼ Bdec
~b5; (14)

where ~b5 is a vector with the total decapole strengths for

each decapole family j 2 1; . . . ; Ndec, ~

ð3Þ

is a vector con-
taining the third-order chromaticities:

~

ð3Þ ¼ @3��x=@	

3

@3��y=@	
3

 !
; (15)

and Bdec is a 2� Ndec matrix that contains the optical
functions evaluated at the locations of the decapole (as
derived in Appendix D)

Bdec ¼ 6

�

ð�3�xÞ1 	 	 	 ð�3�xÞNdec

�ð�3�yÞ1 	 	 	 �ð�3�yÞNdec

 !
: (16)

Two families of dispersive decapoles are sufficient to set
the third-order chromaticities. Ideally, each family would

be installed at a location maximizing �3�x and �3�y,

respectively.

IV. LATTICE STUDIES

This section will detail three example cases for the use
of LGBs and octupoles in storage ring-based synchrotron
light sources. The first case is the actual MAX IV 3 GeV
storage ring lattice which contains octupoles as integral
components of the lattice. The second case is a test lattice
designed to demonstrate the capabilities of the LGB; it also
includes octupoles. The third case uses an operating stor-
age ring lattice to demonstrate second-order chromaticity
correction with octupoles.

A. The MAX IV 3 GeV storage ring lattice

TheMAX IV 3 GeV storage ring is an excellent example
for the substantial performance increase that can be
achieved by using octupoles in a light source lattice. The
MAX IV 3 GeV storage ring lattice design is detailed
elsewhere [3] and only a very brief overview will be given
here. The storage ring lattice was tailored to match the
requirements of state-of-the-art x-ray insertion devices: a
528 m circumference multibend achromat lattice with
20-fold periodicity that achieves an ultralow emittance of
0.33 nm rad for the bare lattice; a reduction by 50% can be
achieved if all straights are occupied with insertion de-
vices. This lattice supplies users with 19 nondispersive 5 m
straight section for insertion devices with beam sizes 
x <
60 �m and 
y < 6 �m (bare lattice) at the center of these

straights.
The crucial aspect of the lattice is the multibend achro-

mat design with the underlying sevenfold unit cell period-
icity. The many weak gradient dipoles with interleaved
focusing quadrupoles result in small dispersion and, hence,
ultralow emittance. A schematic of one achromat is given
in Fig. 6. Although the linear optics can be considered
relaxed, the resulting emittance is so low that beam lines
will be operating in a vertically diffraction-limited regime.
Further advantages of the lattice are the wide tunability of
the beta function in the long straights (making local match-
ing and compensation of insertion devices a feasible
option) and the short straight sections in the dispersion-
suppressing matching cell which can house rf cavities

x [m]

y [m]

5 10 15 20 25

2.0

FIG. 6. Schematic of one of the 20 achromats of the MAX IV
3 GeV storage ring. Magnets indicated are gradient dipoles
(blue), focusing quadrupoles (red), sextupoles (green), and octu-
poles (brown). The basic structure of five unit cells flanked on
either side by a matching cell can be recognized.

PERSPECTIVES FOR FUTURE LIGHT SOURCE LATTICES . . . Phys. Rev. ST Accel. Beams 14, 030701 (2011)

030701-7



therefore keeping all but one long straight (for injection)
available for insertion devices.

1. Description of the problem

Originally, the limitation of this design in terms of non-
linear beam dynamics lay in the sextupole flexibility.
Because of space constraints it was initially considered
to integrate sextupoles into the gradient dipoles and the
interleaved focusing quadrupoles. Besides resulting in a
very compact and simple design, this approach has the
advantage that it puts sextupoles at optimum location in
terms of the beta functions thus reducing required sextu-
pole strength. However, this approach also carries two
distinct disadvantages: first, dispersion in the unit cell di-
poles is low thus requiring stronger defocusing sextupole
components in the gradient bends; second, integrating the
sextupole component in gradient bends and quadrupoles
technically limits the sextupole strength and removes tun-
ing flexibility. In principle, back-leg windings can be used
to adjust the sextupole component in the combined-
function magnets, but this has the disadvantage that excit-
ing these windings induces also a dipole field.

Instead, it was decided to install discrete sextupoles in
the lattice. Defocusing sextupoles now flank the gradient
dipoles and focusing sextupoles have been inserted at the
location of the focusing quadrupoles [42] (cf. Fig. 6). This
puts the focusing sextupoles at ideal locations in terms of
dispersion and beta functions, but limits the number of
focusing sextupole families to three. The defocusing sextu-
poles see less dispersion and a relatively low vertical beta
function, but the large number of magnets mitigates the
weaker leverage. However, due to the symmetry of the
lattice only two to three defocusing families are feasible.
Figure 7 shows the optical functions within the achromat
and the positions of the magnets.

The sextupole settings for the MAX IV 3 GeV storage
ring were obtained by adjusting the linear chromaticity

x;y ¼ þ1:0 and minimizing the first-order resonance driv-

ing terms. This original global minimization of driving
terms resulted in the tune footprint displayed in Fig. 8.
Unfortunately, the chromatic tune footprint was large and
crossed the third-order resonance 3�y ¼ 43 already for

	 ¼ þ3:5% thus potentially limiting MA. In addition,
the ADTS achieved in this manner were unacceptably
high: large horizontal amplitudes (as expected during in-
jection) would push the vertical tune to the half-integer
resonance 2�y ¼ 29; vertical amplitudes were limited at

<4 mm because of the third-integer resonance 3�x ¼ 127.
The weights were subsequently changed in the

Hamiltonian minimizer in order to suppress chromatic
tune shifts. This did, however, not lead to the desired
results. Instead the sextupole strengths were tweaked
manually (away from the global minimum) to specifically
tailor the quadratic chromaticity in such a way as to ‘‘wrap-
up’’ the chromatic tune shifts around the working point.
The results are displayed in Fig. 9. The chromatic tune
shifts for momentum deviations up to �5% have been
compressed within an area of less than 0:07� 0:05 in
tune space keeping off-momentum particles clear of pre-
viously encountered low-order resonances.
However, ADTS remained too large resulting in the

crossing of several potentially harmful resonances.
Tracking with TRACY-3 [43] was used to verify OPA [44]
results and to perform frequency map analysis [45]. A
diffusion map generated by TRACY-3 [46] (displayed in
Fig. 10) confirms these resonance crossings. Almost the
entire area within the DA shows increased diffusion. The

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  5  10  15  20  25
-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

B
et

a 
F

un
ct

io
ns

 [m
]

D
is

pe
rs

io
n 

[m
]

s [m]

βx
βy
ηx

FIG. 7. Beta functions �x, �y and dispersion �x for one
achromat of the MAX IV 3 GeV storage ring. The position of
the dipoles, quadrupoles, and sextupoles are indicated at the
bottom.
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Tracking was performed with OPA and results were verified with
TRACY-3.
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two diffusion ‘‘protrusions’’ are caused by the half-integer
resonances 2�x ¼ 85 and 2�y ¼ 29. In addition to in-

sufficient DA and the increased diffusion within the DA
(especially within the required stay-clear aperture of
½�8 mm� � ½�2:5 mm�), the islandlike structure for large
vertical excursions is unsatisfactory. In fact, most of the
available vertical DA is wasted considering narrow-gap in-
vacuum insertion devices will be installed. Instead, it
would be desirable to trade off this excess vertical DA
for additional horizontal DA.

2. Octupole solution

For the MAX IV 3 GeV storage ring, it was therefore
decided to reduce the ADTS in order to increase the DA

and reduce sources of diffusion within. Because adding
additional sextupole families was not feasible and reducing
the ADTS with the existing sextupole families was only
possible at the expense of increasing the chromatic tune
shift, it was decided to introduce dedicated octupoles into
the lattice [47].
Since the chromatic tune shift had been sufficiently

tailored to the tune space environment of the working
point, only harmonic octupoles were required [48]. A first
family was installed in the long straight section immedi-
ately after the last focusing quadrupole. This is the only
location in the achromat with the proper beta function ratio
(�x > �y) to counteract the @��x=@Jx tune shift. The tune

shift @��y=@Jy requires a large �y=�x ratio. The location

in the achromat that maximizes this ratio is found between
the last defocusing sextupole and the matching dipole.
Because this dipole opens up the dispersion, it was decided
to move the octupole right next to the dipole. Finally, a
location with roughly equal beta function values was
needed for the third family to adjust @��x=@Jy ¼
@��y=@Jx. Installation of the octupole where the beta

functions are equal was not feasible because this occurs
inside the final focusing quadrupole. However, a suitable
location is available between this quadrupole and the
neighboring final defocusing quadrupole. Figure 11 shows
the exact locations of the octupoles and the beta functions
at those locations. Through evaluation of multiturn track-
ing data, it was recognized that perfect cancellation of the
three driving terms did not give best results. Higher-order
contributions dominate the ADTS for larger amplitudes.
Instead, the linear tune shifts were adjusted so as to limit
the resulting ADTS over the entire range available within
the physical aperture.
The result of the nonlinear optimization with octupoles

is displayed in Figs. 12 and 13. The tune footprint of this

FIG. 10. Diffusion map (2000 turns) at the center of the 5 m
long straight section for the MAX IV 3 GeV storage ring lattice
with only five sextupole families. The scale is logarithmic in
tune shift from low (blue) to high (red).
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cell (right). The locations of the three octupole families as well
as the beta functions �x, �y and dispersion �x are shown. This

segment is mirrored upstream of the long straight section.
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The ADTS remain however too large. Tracking was performed
with OPA and results were verified with TRACY-3.
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lattice has been compressed substantially. The chromatic
tune footprint is still retained in a space of less than
0:07� 0:05 while the ADTS has now been restricted to
less than 0:02� 0:07. The third-integer and second-integer
resonances previously crossed for large amplitudes are no
longer encountered. In fact, the only resonance encoun-
tered at all to fourth order is the vertical skew octupole
resonance 4�y ¼ 57 which is expected to be only weakly

driven. The DA beyond the vertical acceptance has been
removed and instead the horizontal DA has been enlarged.
The result is a broader DAwith a vertical DA that extends
across the entire horizontal plane rather than being con-
centrated only at the center. Low betatron amplitudes see
only minimal diffusion while vertical acceptance (beyond

the physical acceptance in the insertion devices) has been
successfully traded off for a broader horizontal acceptance.
The required stay-clear aperture ½�8 mm� � ½�2:5 mm�
shows only lowest tune shifts (D<�9).

3. Discussion

For the MAX IV case, a couple of interesting results are
worth mentioning. It is planned to correct for the influence
of insertion devices both locally (matching of the achromat
optics to the insertion device) and globally (restoring the
working point) [3]. This can be done almost exclusively by
adjusting the nondispersive matching quadrupoles at the
end of the achromat. An important consequence is that this
correction keeps the optical functions nearly constant
within the achromat. Hence, the sextupoles do not neces-
sarily need to be adjusted when the linear optics are
matched to the insertion devices. Therefore, also the octu-
pole settings can be left untouched when insertion device
gaps change and the linear optics are corrected.
Also, because of the ‘‘wrap-up’’ of the chromatic tune

shift around the working point, an additional installation of
decapoles is not necessary. Although additional curvature
of the chromatic tune footprint can be achieved by adjust-
ing the third-order chromaticity, it is not required here: as a
consequence of the 100 MHz rf system, the linear chro-
maticity can be kept low which results in a lattice momen-
tum acceptance exceeding the expected 6% maximum rf
momentum acceptance.
It has been pointed out that folded regions of phase space

are potentially unstable [49]. For amplitude excursions
within the physical aperture of the MAX IV 3 GeV storage
ring, the tune shifts have been minimized so that expected
tunes stay clear of the actual fold. For chromatic tune
shifts, particles are expected to sample parts of the chro-
matic fold (cf. Fig. 12). However, in order for the fold to
cause increased diffusion, resonances must be close to the
actual fold and this behavior would have to show up in
tracking. For this purpose DAwas studied when misalign-
ments and multipole errors [50] had been included in the
tracking. Although the resulting DA is reduced somewhat
by these errors, it always remains beyond the requirements
and no evidence has so far been found that the fold leads to
any detrimental effects. An example is shown in Fig. 14.
The required octupole strength is fairly weak: integrated

strengths remain below 220 m�3. Therefore, a very
compact octupole magnet (L ¼ 50 mm, rtip ¼ 12:5 mm,

Btip < 0:1 T) can be used. In order to gain tuning freedom

(cf. below) a slightly more generous design was chosen so
that strengths up to twice the nominal values are possible.
This results in very simple and inexpensive octupole mag-
nets: the magnet length is 100 mm with a 150� 150 mm
frame using only thin air-cooled windings.
Finally, it is foreseen to make use of the three octupole

tuning knobs extensively during commissioning. As can be
seen by comparing Figs. 10 and 13, the octupoles can be

FIG. 13. Diffusion map (2000 turns) at the center of the 5 m
long straight section for the MAX IV 3 GeV storage ring lattice
with five sextupole families and three octupole families. The
scale is logarithmic in tune shift from low (blue) to high (red).
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used to change the ratio between available horizontal and
vertical DA. The option to trade off vertical DA to increase
injection efficiency is expected to be of great value during
initial commissioning. Once the storage ring has been
commissioned and the optics corrected for misalignments
and field strength errors, the octupoles can be readjusted to
the design values to maximize DA [51]. At this point it will
also become known which resonances are excited in the
actual machine; it could then be desirable to empirically
tune the octupoles in order to adjust tune shifts away from
driven resonances. Furthermore, having the octupole knobs
could become useful during production to account for
slight mismatches of the optics due to varying ID settings.
Overall, this should result in maximizing lifetime while
keeping injection efficiency high. Ultimately, the octupoles
give the freedom to optimize the dynamic behavior of the
storage ring for different operation scenarios.

B. Example for a super-LGB lattice

A short superconducting dipole shows a longitudinal
gradient by nature, and can thus be used to build a compact
hard x-ray lattice of low emittance. For example, the super-
bend of the ALS [25] has a roughly Gaussian longitudinal
field profile ByðsÞ of 0.18 m FWHM and 6 T maximum

peak field, as shown in Fig. 15.
The lattice design concept shown in Figs. 16 and 17 uses

this dipole scaled to 10� deflection angle at 2 GeVas CBM
of a triple-bend achromat structure. The achromatic arc
was completed by adding 5� end gradient bends for

dispersion suppression. Combined quadrupole/sextupole
magnets were used inside the achromat for dispersion
matching and basic chromaticity correction. The horizon-
tally focusing magnet also includes a weak octupole com-
ponent for reduction of the second-order horizontal
chromaticity. Four additional sextupole families were im-
plemented for chromaticity tuning and DA optimization;
half of the sextupoles are also equipped with dipole coils
for orbit correction. Three octupole families in the
dispersion-free region control the ADTS. A discrete quad-
rupole is required for matching the horizontal beta function
to the 4 m long straight section. Pole face strips inside the
gradient bend, as implemented in MAX III [52] for ex-
ample, together with the discrete quadrupole family would
allow moving the working point in the tune diagram. 18 of
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FIG. 16. Lattice cell based on a central superconducting LGB.

FIG. 15. Magnetic field of the ALS superbend [25] (dotted
line) and approximation by a stepwise Gaussian and scaling to
10� deflection angle at 2 GeV.

FIG. 17. Achromatic arc of the super-LGB lattice.
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FIG. 14. On-momentum DA calculated with TRACY-3 at the
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these cells would form a ring of 228.6 m circumference for
18 hard x-ray beam lines and, taking into account space
required for injection and rf, about 15 soft x-ray undulator
beam lines.

The parameters of this lattice are given in Table I. The
dispersion in the center of the super-LGBwas set exactly to
the TME condition [i.e. d ¼ 1, cf. Eq. (6)], whereas the
horizontal beta function was relaxed (b ¼ 3:7) to limit the
cell phase advance. Nevertheless, the emittance is lower
than the TME of a homogenous 10� dipole (0.67 nm at
2 GeV). The homogenous EBMs of the 5� angle provide
about the same emittance as the super-LGB CBM.

The chromaticities are large, but most of it is corrected
locally, where it is created, which avoids momentum-
dependent beta beats and thus allows large MA. With an
elliptic vacuum chamber of 30 mm full width and 20 mm
full height as it is used in the SLS booster synchrotron [33],
the maximum dispersion of 0.13 m allows a physical MA
of �5:7%. The optimization of DA and dynamic MAwas
done in a way similar to theMAX IV design. The octupoles
were set to create a fold of the frequency map just outside
the vacuum chamber, as shown in Fig. 18: this minimizes
the amplitude-dependent tune footprint while providing
maximum tune spread in the beam core region for
Landau damping of transverse instabilities [53].

The resulting DA of the ideal lattice does not signifi-
cantly reduce the aperture defined by the vacuum chamber
over the full range of energies as shown in Fig. 19.
Assuming 500 mA total current, 1% emittance coupling,
and a 100 MHz rf system of 800 kV peak voltage results in
7.5 hrs of Touschek lifetime.

Orbit amplification factors were found to be 60 horizon-
tal, 33 vertical for single element misalignments of 50�m
and 50�rad rms; however, in reality the magnets of one arc
would be combined in three or even one combined girder/
yoke resulting in lower relative misalignments.

The small vacuum chamber allows high multipole gra-
dients at moderate pole-tip fields. In this example, the pole-
tip field in the gradient bend amounts to 1.35 T, in the
quadrupole/sextupoles to <0:5 T, in the sextupoles to
0.25 T, and to <0:1 T in the octupoles.

The draft design presented here does not yet prove
feasibility, and the radiation available from the machine

would probably not meet user requirements, but as a mere
case study it does indeed show how a compact hard x-ray
machine of high brightness could be realized by exploiting
the longitudinal field variation of a superconducting dipole
magnet.

C. Momentum acceptance of a compact light source

Compact light sources are usually designed for high flux
rather than for highest brightness, and therefore have fewer
lattice cells, larger deflection angles per dipole, and hence
larger dispersion. Achieving sufficient DA is usually less

FIG. 18. Tune footprint of the super-LGB lattice. Crosses mark
the chromatic tune shift for energy variation from �7:0% (left)
toþ7:5% (right). The three diamond curves mark the tune shifts
with vertical (upper), horizontal (lower), and combined ampli-
tude (middle). Only the points in black are inside the vacuum
chamber. Resonances of third (thick solid), fourth (thin solid),
and fifth order (thin dashed) are shown.

FIG. 19. Dynamic apertures of the ideal super-LGB lattice.

TABLE I. Parameters of the super-LGB test lattice.

Circumference [m] 228.6

Working point 26:28=8:71
Chromaticities �160=� 53
Momentum compaction factor 1:7� 10�4

Horizontal damping partition Jx 1.04

Energy [GeV] 2.0

Emittance [nm rad] 0.55

rms energy spread 1:37� 10�3

Energy loss per turn [keV] 554
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challenging and therefore two sextupole families are often
considered sufficient. Nevertheless, second-order chroma-
ticity may restrict the MA. It can, however, be corrected in
a straightforward way using two families of octupoles in
the dispersive region. As an example, we have chosen the
lattice of the ANKA light source [54]. Figure 20 displays
the optical functions for a working point at 6:85=3:22 and
Fig. 21 shows the chromatic tune footprint with and with-
out octupoles for linear chromaticities of þ5=þ 5.
Because of the large dispersion, the octupoles are well
feasible: With a magnet gap of 70 mm and a length of
150 mm, the maximum pole-tip field would be 0.17 T at
2.5 GeV.

V. CONCLUSIONS

Longitudinal gradient bending magnets (LGB) have not
yet been exploited for low-emittance lattices. However,
application appears promising only for high-field (super-
conducting) LGBs operated slightly above TME condi-
tions in order to limit the cell length and make use of
hard x rays from the central high-field region. In general,
LGBs used for ultralow emittance lead to rather long lattice
cells and thus appear inferior to multibend achromat
schemes.

Octupoles provide highly efficient knobs for controlling
ADTS. As such they are a powerful tool for design, com-
missioning, and operation of an ultralow-emittance light
source. In ultralow-emittance design, where the second-
order optimization of sextupoles is exhausted, octupoles
actually become essential for realization of sufficient DA.
This is exemplified in the ultralow-emittance design of the
MAX IV 3 GeV storage ring lattice where octupoles have
become an integral part of the lattice design.
Control of second-order chromaticity with octupoles or

control of third-order chromaticity with decapoles is,
although in principle possible, less efficient due to the
rather low dispersion encountered in ultralow-emittance
lattices where very many dipoles with small bending an-
gles are used. In compact light sources however, where
dispersion is often larger, application of octupoles or de-
capoles to correct higher-order chromatic effects is
straightforward. Comparably weak octupoles can already
lead to a substantial reduction of tune footprint.
The application of octupoles and decapoles as presented

here neglects the resonance driving terms, assuming that
the multipoles are ‘‘weak’’—similar to the situation that
existed for sextupoles in relaxed lattices, where only chro-
maticity correction had to be considered. Straightforward
continuation of this work would lead to making use of the
complete linear system of first-order octupole and decapole
Hamiltonians, as is common practice today for sextupoles.

APPENDIX A: EMITTANCE
AND PHASE ADVANCE

For a homogenous bending magnet, the radiation inte-
gral I5 from Eq. (2) is given by I5 ¼ h3hH imag ¼
h3
R
LH ðsÞds, i.e., by averaging the dispersion amplitude

from Eq. (3) over the bending magnets [9]. The matching
conditions for obtaining the minimum emittance in the two
cases of the center bend (CBM) and the end bend (EBM)
are obtained by minimizing

CBM: @H =@�xo ¼! 0 @H =@�o¼! 0 (A1)

EBM: @H =@�xo ¼! 0 @H =@l¼! 0; (A2)

where �xo is the beta function at the focus inside the
magnet, �o is the dispersion at the focus (CBM), and l is
the location of the focus from the entrance edge (EBM).
Assuming a small deflection angle � ¼ hL � 1 and

negligible gradient, the transfer matrix for ðx; x0j	) is ap-
proximately given by

�
1 s

0 1

�������� hs2=2

hs

�
: (A3)

Application to �xðsÞ and �ðsÞ with initial conditions �xo,
�o at the center focus gives for the CBM

FIG. 21. Chromatic tune shifts of the ANKA lattice without
(gray) and with (black) two families of octupoles for an energy
range of �3%. The diamond marks the working point.
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FIG. 20. Optical function for the ANKA light source.
Octupoles, shown as thin, long lines in the magnet plot, were
added irrespective of geometric conditions of the real machine.
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hH imag ¼ h2

�xo

�ðL=2Þ4
20

þ ðL=2Þ2
3

�
�2

xo � �o

h

�
þ
�
�o

h

�
2
�
:

(A4)

For the EBMwe get with�xo at the focus in distance l from
the entrance (EBM) edge:

hH imag ¼ h2

�xo

�
L4

20
þ L2

3
ð�2

xo þ l2Þ � lL3

4

�
: (A5)

Minimization yields the matching conditions from Eq. (5)
and inserting these results,

hH imin
mag ¼ h2L3

12
ffiffiffiffiffiffi
15

p Fmin (A6)

with Fmin
CBM ¼ 1 and Fmin

EBM ¼ 3 [13].

Introducing Eq. (A6) and the parameters for deviations
from the TME conditions from Eq. (6) into Eqs. (A4) and
(A5) results in

CBM: F ¼ ð9þ 4b2 � 10dþ 5d2Þ=ð8bÞ
EBM: F ¼ ð48þ 3b2 � 240�þ 320�2Þ=ð2bÞ

(A7)

which can nicely be written as ellipse equations, cf. Eq. (7).
In order to calculate the cell phase advance, we consider

the transfer matrix R from the focus ‘‘0’’ to the point ‘‘P’’
(CBM), respectively ‘‘M’’ (EBM), where we require
�xP=M ¼ �0

P=M ¼ 0 in order to build a periodic cell

(CBM), respectively a mirror cell (EBM) (cf. Fig. 1).
This gives two matching conditions for the matrix R:

0¼! �xP=M ¼ �r11r21�xo � r12r22
1

�xo

0¼! �0
P=M ¼ r21�̂0 þ r22�̂

0
0:

(A8)

Here we took into account the bending magnet’s dispersion
production [i.e. the right column of its matrix from
Eq. (A3)] by introducing �̂0, �̂

0
0, which is the back trans-

formation of dispersion from the bending magnet exit edge
to the location of the focus:

CBM: �̂o ¼ �o � hL2=8 �̂0
o ¼ hL=2

EBM: �̂o ¼ hL2ðl� L=2Þ �̂0
o ¼ hL:

(A9)

In the CBM case the matrix of the periodic cell is given by

M ¼ TR�1TR with T ¼ 1 0
0 �1

� �
; (A10)

the mirror matrix to be applied when changing from for-
ward to backward calculation and vice versa. In the EBM
case, the same equation applies to a ‘‘pseudoperiodic’’ cell
from point ‘‘0’’ to its mirror image on the other side of
point ‘‘M’’, which is all we can consider in the EMB case:
since the dispersion constraint does not exist for matching
to point ‘‘S’’, the matrix for the left side of the cell
[cf. Fig. 1 (lower)] is not determined. The cell phase

advance is obtained from the trace of the periodic or
pseudoperiodic matrix:

cos� ¼ m11 þm22

2
¼ r11r22 þ r12r21: (A11)

Using symplecticity, jRj ¼ r11r22 � r12r21 ¼ 1, only one
of the products, r11r22 or r12r21, remains to be determined.
Thus, although the matrix R itself is not determined, the
cell phase advance can be calculated from the three
constraints given (the two matching conditions and sym-
plecticity):

tan
�

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos�

1þ cos�

s
¼ �̂0

o

�̂o

�xo: (A12)

Inserting the back transformed dispersion from Eq. (A9),
the minimum emittance values from Eq. (5) and the pa-
rameters b, d, � from Eq. (6), we obtain the cell phase
advance from Eq. (8).

APPENDIX B: EFFECTIVE EMITTANCE

In a dispersive region, the effective emittance is obtained
from a convolution of the 2D Gaussian distribution of
betatron amplitudes with the 1D Gaussian distribution of
momenta.
In normalized phase space, using coordinates

� ¼ xffiffiffiffi
�

p �0 ¼ �xþ �x0ffiffiffiffi
�

p ; (B1)

the 1-
 beam ellipse of the 2D betatron amplitude distri-
bution is transformed into a circle with radius

ffiffiffiffiffi
�o

p
, and the

1D distribution of momenta will extend along a line with a

distribution of standard deviation 
� ¼
ffiffiffiffiffiffiffi
H

p

	, with H

from Eq. (3) and 
	 the natural energy spread.
The standard deviation of the resulting beam distribution

parallel to this line is given by convolution, whereas the
standard deviation perpendicular to this line remains
unchanged:


2
k ¼ �o þH
2

	 
2
? ¼ �o: (B2)

The effective emittance is given as the product of both:

�eff ¼ 
k
? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2o þ �oH
2

	

q
: (B3)

APPENDIX C: OCTUPOLE HAMILTONIAN

The octupole Hamiltonian can be expanded for small
deviations from design momentum 	 ¼ �p=p and written
as

H4¼b4
4
½1�	þ	2þOð	3Þ�ðx4�6x2y2þy4Þ; (C1)

where b4 is the normalized integrated strength of a
regular octupole. In most lattices many octupoles will be
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distributed throughout the lattice. Because of linear super-
position, we may add contributions to H4 from individual
octupoles in the lattice. In an ideal flat machine with
perfect magnets betatron motion can be expressed as

x ¼ x� þ �	; y ¼ y�; (C2)

where x� and y� describe horizontal and vertical betatron

motion around the design orbit and � is the horizontal
dispersion. Inserting this into Eq. (C1), the Hamiltonian
can be expanded to second order in momentum

H4 ¼ b4
4
fðoctÞ þ 	½�ðoctÞ þ 4�ðsextÞ� þ 	2½ðoctÞ

� 4�ðsextÞ þ 6�2ðquadÞ�g þOð	3Þ; (C3)

where the three following terms have been recognized:

oct ¼ x4� � 6x2�y
2 þ y4; (C4)

sext ¼ x3� � 3x�y
2; (C5)

quad ¼ x2� � y2: (C6)

At this point betatron motion can be expressed in the
‘‘resonance basis’’ [38]:

hx;y� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jx;y�x;y

q
e�i�x;y ; (C7)

where Jx;y is the amplitude and �x;y the phase of the

betatron motion. This can be inserted into the
Hamiltonian [Eq. (C3)] by recalling that

x� ¼ 1
2ðhxþ þ hx�Þ; (C8)

y� ¼ 1
2ðhyþ þ hy�Þ: (C9)

It is convenient to then express the octupole Hamiltonian
in the resonance basis:

H4 ¼
X

hjklmn ¼X
�jklmnh

j
xþh

k
x�h

l
yþh

m
y�	

n

¼X
�jklmnð2Jx�xÞðjþkÞ=2

�ð2Jy�yÞðlþmÞ=2ei½ðj�kÞ�xþðl�mÞ�y�	n: (C10)

Summands for which the sum of indices ðjþ kþ lþmþ
nÞ ¼ 4 are first-order octupole terms; there are a total of 36
such terms in the octupole Hamiltonian. Those containing
phases, i.e. terms where either ðj� kÞ � 0 or ðl�mÞ � 0
drive betatron resonances: Qx, 2Qx, 2Qy, 3Qx, Qx � 2Qy,

2Qx � 2Qy, 4Qx, 4Qy. For the octupole Hamiltonian there

exist 30 such terms for momentum deviations up to second
order. One example is

h02200 ¼ h�20020 ¼ � 3b4
32

�x�yð2JxÞð2JyÞe�ið2�x�2�yÞ

(C11)

which obviously drives the 2Qx � 2Qy resonance.

There are however also five terms (to second order in
momentum deviation) in the octupole Hamiltonian that do
not contain phases. They are

h22000 ¼ 3
8b4�

2
xJ

2
x; (C12)

h11110 ¼ �3b4�x�yJxJy; (C13)

h00220 ¼ 3
8b4�

2
yJ

2
y; (C14)

h11002 ¼ 3
2b4�xJx�

2	2; (C15)

h00112 ¼ �3
2b4�yJy�

2	2: (C16)

These five terms are tune shifts, which is easily recognized
if one recalls that J and 2�� are conjugate variables, that
is,

��x;y ¼ 1

2�

@H

@Jx;y
: (C17)

The first three terms (second-order amplitude dependence)
express ADTS:

@��x;y

@Jx;y
¼ 1

2�

@2H4

@J2x;y

¼ 1

2�

@2

@J2x;y
ðh22000 þ h00220 þ h11110Þ;

! @��x

@Jx
¼ 3

8�
b4�

2
x; (C18)

! @��y

@Jy
¼ 3

8�
b4�

2
y; (C19)

! @��x

@Jy
¼ @��y

@Jx
¼ � 3

4�
b4�x�y: (C20)

The two remaining terms show only linear dependence on
amplitude. They are therefore chromatic tune shifts, in fact
they express the quadratic chromaticity:


ð2Þ
x;y ¼ 1

2

@2��x;y

@	2
¼ 1

4�

@2

@	2

@

@Jx;y
ðh11002 þ h00112Þ

¼ 6b4
16�

�2 @2

@	2
	2 @

@Jx;y
ð�xJx � �yJyÞ;

! 
ð2Þ
x;y ¼ � 3b4

4�
�2�x;y: (C21)
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APPENDIX D: DECAPOLE HAMILTONIAN

The decapole Hamiltonian can be treated analogously to
the octupole Hamiltonian (cf. Appendix C). For small
deviations from design momentum 	 ¼ �p=p it is ex-
panded to

H5¼b5
5
½1�	þ	2�	3þOð	4Þ�ðx5�10x3y2þ5xy4Þ;

(D1)

where b5 is the normalized integrated strength of a regular
decapole. Betatron motion in an ideal flat machine with
perfect magnets is again expressed as in Eq. (C2) which
leads to the following Hamiltonian:

H5¼b5
5
fðdecÞþ	½�ðdecÞþ5�ðoctÞ�

þ	2½ðdecÞ�5�ðoctÞþ10�2ðsextÞ�
þ	3½�ðdecÞþ5�ðoctÞ�10�2ðsextÞþ10�3ðquadÞ�g
þOð	4Þ; (D2)

where again the definitions in Eqs. (C4)–(C6) have been
made use of in addition to

dec ¼ x5� � 10x3�y
2 þ 5x�y

4: (D3)

The Hamiltonian can then again be expressed in the
resonance basis [Eqs. (C7)–(C10)]. There are in total 65
decapolar terms in the Hamiltonian (63 up to third order in
momentum) of which 60 carry phases and hence drive
resonances. The remaining five terms are tune shifts which
shall be examined here. Keeping in mind Eq. (C17), the
third-order chromaticity is derived by inspecting terms
hjklmn for which n ¼ 3:


ð3Þ
x;y ¼ 1

6

@3��x;y

@	3
¼ 1

12�

@3

@	3

@

@Jx;y
ðh11003 þ h00113Þ

¼ b5
6�

�3 @3

@	3
	3 @

@Jx;y
ð�xJx � �yJyÞ;

! 
ð3Þ
x;y ¼ �b5

�
�3�x;y: (D4)

The remaining three tune shifts in the decapole
Hamiltonian are

h22001 ¼ 3
2b5�

2
xJ

2
x�	; (D5)

h00221 ¼ 3
2b5�

2
xJ

2
x�	; (D6)

h11111 ¼ �6b5�x�yJxJy�	: (D7)

These are essentially ADTS for off-momentum particles
because, as one would expect, for such particles a decapole
feeds down as an octupole. The ADTS are expressed
analogously to Eqs. (C18)–(C20):

@��x;y

@Jx;y
¼ 1

2�

@2H5

@J2x;y

¼ 1

2�

@2

@J2x;y
ðh22001 þ h00221 þ h11111Þ;

! @��x

@Jx
¼ 3

2�
b5�

2
x�	; (D8)

! @��y

@Jy
¼ 3

2�
b5�

2
y�	; (D9)

! @��x

@Jy
¼ @��y

@Jx
¼ � 3

�
b5�x�y�	 (D10)

containing the explicit dependence on momentum
deviation.
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