MAX IV 1.5 GeV Storage Ring Lattice Design and Magnet Requirements

Simon C. Leemann MAX IV 1.5 GeV Ring Magnet Review Meeting, April 24, 2012

Outline

- Lattice & optics, key parameters
- Benchmarks & performance
- Derived requirements

•References:

- DDR Chapter 3: "MAX IV 1.5 GeV Storage Ring" <u>http://www.maxlab.lu.se/maxlab/max4/DDR_public</u>
- MAX-lab Internal Note 20120313: "Updates to the MAX IV 1.5 GeV Storage Ring Lattice"
 http://www.maxlab.lu.se/maxlab/max4/max_iv_reports_public
- Lattice m5-20120313-521-bare.lat & m5-20120313-523-bare.lat http://www.maxlab.lu.se/maxlab/max4/max_iv_reports_public

- •1.5 GeV
- •12-fold DBA lattice
- •96 m circumference
- •12 × 3.5 m straights
- 10 straights for ID's
- •ε₀ = 5.982 nm rad

3 / 27

•Each DBA manufactured as one block → single "girder"

DBA is mirror-symmetric around center

•DBA contains:

- 2 × 15° sector bends (28 slices in model) with defocusing gradient
- $-3 \times$ focusing quads (3/4 slices in model) with focusing sextupole gradient
- 4 × defocusing sextupoles (2 chromatic, 2 harmonic)
- 4 × correction sextupoles (also used as dipole correctors)

Simon C. Leemann

Simon C. Leemann

Dedicated sextupoles and sextupole gradients in quads:

- SQFi, SDi: chromatic sextupoles to correct neg. natural chromaticity to +2
- SQFo, SDo: harmonic sextupoles for nonlinear optics optimization

Beyond nonlinear optics "in iron" (521):

- SCi adjusts focusing sextupole component in SQFi
- SCo adjusts focusing sextupole component in SQFo
- 523 nonlinear optics uses SCi/o (and SDi/o) to adjust chromaticity to +1

Simon C. Leemann

Other corrections:

- Dipole gradient correction: pole-face strips in dipoles
- Dipole correctors: pair (H/V) of secondary windings on SQFo & SCi
- Skew quads & aux. sextupoles: secondary windings on SQFi/o, SDi/o, SCi/o (the same winding can be used as either upright quad [BBC], skew quad, or aux. sextupole depending on how it's powered)

Beam dynamics requirements:

- Sufficient DA for injection (H) and lifetime (coupling, V)
- Sufficient MA for lifetime

• Targets:

- Roughly 100% capture efficiency with both injection schemes (PSM and KI)
- Roughly 10 h overall lifetime @ 500 mA
 - ➡ translates to roughly 21 h Touschek lifetime
 - ➡ translates to MA >3.5% (if LC's tuned in to stretch bunches to 60 mm)

Illustration: PSM injection process (1)

Simon C. Leemann

Illustration: PSM injection process (2)

Simon C. Leemann

Illustration: PSM injection process (3)

Simon C. Leemann

Illustration: momentum acceptance (1)

- 500 mA \rightarrow 5 nC/bunch, IBS included (minute effect at 1% coupling)
- 2×280 kV max. main cavities → RF acceptance
- Design apertures (20×10, 28×14, septum included) → lattice acceptance

Simon C. Leemann

Illustration: momentum acceptance (2)

Simon C. Leemann

• Ultimately, DA is the benchmark:

- Required DA off energy:
 - Verify finite DA available at $\delta \cong \pm 4\%$
- Required DA on energy:
 - Injection process: ~7 mm maximum amplitude after PSM kick
 - Margin for error (misalignments, injection tuning): ~ 1.5 mm
 - ⇒ ± 8.5 mm @ straight center
 - Vertical DA should (at least) cover narrow-gap ID chamber acceptance
 - ⇒ ± 3 mm @ straight center (working assumption)

• Design DA (523 nonlinear optics):

Simon C. Leemann

• Real DA derived from:

- Misaligned machine (using orbit correction)
- Magnets with multipole errors
- Magnets with field errors (after shunting within families)

Find acceptable DA for the above cases → guidelines for:

- Magnetic alignment (alignment <u>within</u> the magnet block)
- Magnet field quality
- Power supply stability (using analytic estimates)

• Real DA (523 nonlinear optics with all errors)

Simon C. Leemann

Real DA (523 nonlinear optics with all errors)

Simon C. Leemann

Which errors contribute most to DA reduction?

Which errors contribute most to DA reduction?

•Alignment error model: Gaussian, cut-off @ $\pm 2\sigma$

	Transverse displacements	Roll error
Girders (magnet blocks)	50 micron rms	0.2 mrad rms
Dipole slices (!)	25 micron rms	0.2 mrad rms
Quadrupole slices (!)	25 micron rms	0.2 mrad rms
Sextupoles	25 micron rms	0.2 mrad rms
Correctors	25 micron rms	0.2 mrad rms
BPM calibration	3 micron rms	0.1 mrad rms

• Field errors cause much more damage than multipoles

• Multipole error model:

- APAC 2001, THP017, Antokhin et al.
- SLS quadrupoles and sextupoles measured at BINP
- Systematic and random errors
- Upright and skew errors
- Random errors modeled as Gaussian with cut-off @ $\pm 2 \sigma$

Table 3.7: Multipole errors used in the MAX IV error model. The data has been taken from magnet measurements of the SLS storage ring magnets [6]. The order column refers to the multipole order defined by 2 = quadrupole, 3 = sextupole, etc.

	Magnet family	Error type	Order	Maximum multipole component (relative to main field component)	
es and				Upright	Skew
sured at RINP	Quadrupoles	Systematic	6	$0.5 imes 10^{-4}$	
I random			10	0.5×10^{-4}	
			14	$0.1 imes 10^{-4}$	
	Sextupoles	Systematic	9	$0.5 imes 10^{-4}$	
			15	$0.5 imes 10^{-4}$	
w errors			21	0.5×10^{-4}	
modolod ac	Quadrupoles	Random (rms)	2	2.5×10^{-4}	
cut-off @ ± 2 σ			3	2.8×10^{-4}	2.9×10^{-4}
			4	$1.9 imes 10^{-4}$	$1.4 imes 10^{-4}$
			6	$1.3 imes 10^{-4}$	
			10	$3.0 imes 10^{-5}$	
	Sextupoles	Random (rms)	3	$5.0 imes 10^{-4}$	
			4	$5.2 imes 10^{-4}$	4.9×10^{-4}
			5	$3.5 imes 10^{-4}$	
			9	8.0×10^{-5}	
om DDR Chanter 3			15	$5.0 imes 10^{-5}$	

Simon C. Leemann

Dipole gradient errors actually cause most damage

• Field error model: Gaussian, cut-off @ $\pm 2\sigma$

- Dipole gradients: 0.02% rms
- Quadrupole and sextupole gradients: 0.2% rms

Reduce dipole gradient variations by:

- Shunting dipoles to gradients rather than bending angles (offload bending angle errors to orbit correctors)
- Power PFS's individually

Systematic field errors from power supply drift or jitter

- Dipoles \rightarrow orbit correction / orbit feedback, tune measurement
- PFS's and quadrupoles \rightarrow tune measurement / tune feedback
- Sextupoles \rightarrow chromaticity measurement
- Quadrupole gradients:
 - 1 PS for PFS's, SQFi, and SQFo
 - 10⁻⁴ jitter on PS will lead to tune jitter of roughly 1×10⁻³ (H/V)
- Sextupole gradients:
 - 1 PS for SQFi, SQFo, SDi, and SDo
 - 10⁻⁴ jitter on PS will lead to chromaticity jitter below 0.01 (H/V)

