MAX IV 1.5 GeV Storage Ring

Recent Developments in Lattice, Optics, and Beam Dynamics

Simon C. Leemann 4th MAX IV MAC Meeting, May 29-30, 2012

Reminder: 1.5 GeV Storage Ring

SP

"No problem is too small or too trivial if we can really do something about it."

1.5 GeV

Linac

— Richard P. Feynman

Outline

- Recent lattice/model modifications
- Updated linear optics
- Updated nonlinear optics
- Realistic performance: ID's & errors
- Injection: single dipole kicker & pulsed sextupole magnet

1.5 GeV 12-fold DBA lattice 96 m circumference 12 × 3.5 m straights 10 straights for ID's $\varepsilon_0 = 5.982$ nm rad

Lattice Modifications

Lattice model completed

- Pingers, dipole kicker, and PSM included

Magnet engineering feedback

- Shifted sextupoles to make room for coils & field clamps
- Hard-edge magnet lengths closer to mechanical lengths

Vacuum engineering feedback

- Realistic vacuum apertures in model (incl. septum)

Slice model

- 28 slices to model gradient dipoles
- 3/4 slices to model focusing quads with sextupole component
- Longitudinal field profiles properly modeled (can also include crosstalk and systematic multipoles)

Restore linear optics, re-optimize nonlinear optics, revisit injection, verify expected performance...

IPAC'II, WEPO016

Updated Linear Optics (1)

Gradient dipoles

- Focusing quadrupoles contain sextupole component
- Discrete sextupoles for defocusing

Updated Linear Optics (2)

Corrections

- Pole-face strips to correct focusing gradient in dipoles
- Correction sextupoles for correction of sextupole component in iron
- Dipole corrector coils on SCi/o
- Extra windings on SCi/o (skew quads, aux. sext) and SDi/o(aux. sext)
- BBC: active shunts on SQFi/o (in addition to regular shunts)

Updated Linear Optics (3)

Original design optics restored

Several iterations with magnet design in order to get ratios right

• Vertical tune $3.14 \rightarrow 3.15$ (nonlinear optics optimization)

Follow "standard MAX IV" optimization process:

- Correct natural chromaticities
- Minimize RDT's via weighted SVD
- Tailor tune shifts over relevant range by tweaking (b₃L)
- Adjust linear optics (if necessary)
- Verify (DA, MA, FMA, etc.)
- Iterate...

PRST-AB 12, 120701 (2009)

PRST-AB 14,030701 (2011)

Follow "standard MAX IV" optimization process:

- Correct natural chromaticities
- Minimize RDT's via weighted SVD
- Tailor tune shifts over relevant range by tweaking (b₃L)
- Adjust linear optics (if necessary)
- Verify (DA, MA, FMA, etc.)
- Iterate...
- •In iron: 521 nonlinear optics, $\xi_{x,y} = +2.0$
- •User operation: 523 nonlin. optics using SCi/o, $\xi_{x,y} = +1.0$
 - Reduce chromatic and amplitude-dependent tune shifts

PRST-AB 12, 120701 (2009)

PRST-AB 14,030701 (2011)

Follow "standard MAX IV" optimization process:

- Correct natural chromaticities
- Minimize RDT's via weighted SVD
- Tailor tune shifts over relevant range by tweaking (b₃L)
- Adjust linear optics (if necessary)
- Verify (DA, MA, FMA, etc.)
- Iterate...

In iron: 521 nonlin

User operation: 52

Reduce chromatic a

PRST-AB **14**, 030701 (2011)

PRST-AB **12**, 120701 (2009)

Follow "standard MAX IV" optimization process:

- Correct natural chromaticities
- Minimize RDT's via weighted SVD
- Tailor tune shifts over relevant range by tweaking (b₃L)
- Adjust linear optics (if necessary)
- Verify (DA, MA, FMA, etc.)

PRST-AB 12, 120701 (2009)

PRST-AB 14,030701 (2011)

Follow "standard MAX IV" optimization process:

- Correct natural chromaticities
- Minimize RDT's via weighted SVD
- Tailor tune shifts over relevant range by tweaking (b₃L)
- Adjust linear optics (if necessary)

PRST-AB 14,030701 (2011)

Simon C. Leemann 4th MAX IV MAC Meeting, May 29-30, 2012

Follow "standard MAX IV" optimization process:

- Correct natural chromaticities
- Minimize RDT's via weighted SVD
- Tailor tune shifts over relevant range by tweaking (b₃L)
- Adjust linear optics (if necessary)
- Verify (DA, MA, FMA, etc.)
- Iterate...

•In iron: 521 nonlinear optics, $\xi_{x,y} = +2.0$

•User operation: 523 nonlin. optics using SCi/o, $\xi_{x,y} = +1.0$

- Reduce chromatic and amplitude-dependent tune shifts
 - Compact tune footprint clear of potentially dangerous resonances

PRST-AB 12, 120701 (2009)

PRST-AB 14,030701 (2011)

Simon C. Leemann 4th MAX IV MAC Meeting, May 29-30, 2012

Follow "standard MAX IV" optimization process:

- Correct natural chromaticities
- Minimize RDT's via weighted SVD
- Tailor tune shifts over relevant range by tweaking (b₃L)
- Adjust linear optics (if necessary)
- Verify (DA, MA, FMA, etc.)
- Iterate...

• In iron: 521 nonlinear optics, $\xi_{x,y} = +2.0$

•User operation: 523 nonlin. optics using SCi/o, $\xi_{x,y} = +1.0$

- Reduce chromatic and amplitude-dependent tune shifts
 - Compact tune footprint clear of potentially dangerous resonances
 - → Large DA, large off-momentum DA (confirmed with FMA)

PRST-AB 12, 120701 (2009)

PRST-AB 14,030701 (2011)

Simon C. Leemann 4th MAX IV MAC Meeting, May 29-30, 2012

Simon C. Leemann 4th MAX IV MAC Meeting, May 29-30, 2012

Simon C. Leemann 4th MAX IV MAC Meeting, May 29-30, 2012

Follow "standard MAX IV" optimization process:

- Correct natural chromaticities
- Minimize RDT's via weighted SVD
- Tailor tune shifts over relevant range by tweaking (b₃L)
- Adjust linear optics (if necessary)
- Verify (DA, MA, FMA, etc.)
- Iterate...

• In iron: 521 nonlinear optics, $\xi_{x,y} = +2.0$

•User operation: 523 nonlin. optics using SCi/o, $\xi_{x,y} = +1.0$

- Reduce chromatic and amplitude-dependent tune shifts
 - Compact tune footprint clear of potentially dangerous resonances
 - → Large DA, large off-momentum DA (confirmed with FMA)
 - ➡ Large momentum acceptance (MA)

PRST-AB 12, 120701 (2009)

PRST-AB 14,030701 (2011)

Simon C. Leemann 4th MAX IV MAC Meeting, May 29-30, 2012

Follow "standard MAX IV" optimization process:

- Correct natural chromaticities
- Minimize RDT's via weighted SVD
- Tailor tune shifts over relevant range by tweaking (b₃L)
- Adjust linear optics (if necessary)
- Verify (DA, MA, FMA, etc.)
- Iterate...

• In iron: 521 nonlinear optics, $\xi_{x,y} = +2.0$

•User operation: 523 nonlin. optics using SCi/o, $\xi_{x,y} = +1.0$

- Reduce chromatic and amplitude-dependent tune shifts
 - Compact tune footprint clear of potentially dangerous resonances
 - → Large DA, large off-momentum DA (confirmed with FMA)
 - ➡ Large momentum acceptance (MA)
 - ➡ Good Touschek lifetime

PRST-AB 12, 120701 (2009)

PRST-AB 14,030701 (2011)

Realistic Performance

Is the lattice stable?

•How do perturbed optics behave?

- Machine with misalignments, field errors & multipole errors
- Machine with strong ID's (Solaris) \rightarrow matching?

Misalignments

- Similar to updated model for 3 GeV ring

Misalignments

- Similar to updated model for 3 GeV ring

Gaussian, 20 cutoff

	Transverse displacements	Roll error
Girders (magnet blocks)	50 micron rms	0.2 mrad rms
Dipole slices (!)	25 micron rms	0.2 mrad rms
Quadrupole slices (!)	25 micron rms	0.2 mrad rms
Sextupoles	25 micron rms	0.2 mrad rms
Correctors	25 micron rms	0.2 mrad rms
BPM calibration	3 micron rms	0.1 mrad rms

Misalignments

- Similar to updated model for 3 GeV ring
- Results indicate no DA problems

Misalignments

- Similar to updated model for 3 GeV ring
- Results indicate no DA problems

Misalignments

- Similar to updated model for 3 GeV ring
- Results indicate no DA problems

Systematic field errors

- Analytic estimates indicate chosen PS's reasonable

Misalignments

- Similar to updated model for 3 GeV ring
- Results indicate no DA problems

Systematic field errors

- Analytic estimates indicate chosen PS's reasonable
 - Quadrupole gradients:
 - 1 PS for PFS's, SQFi, and SQFo
 - 10⁻⁴ jitter on PS will lead to tune jitter of roughly 1×10⁻³ (H/V)
 - Sextupole gradients:
 - 1 PS for SQFi, SQFo, SDi, and SDo
 - 10⁻⁴ jitter on PS will lead to chromaticity jitter below 0.01 (H/V)

Misalignments

- Similar to updated model for 3 GeV ring
- Results indicate no DA problems

Systematic field errors

- Analytic estimates indicate chosen PS's reasonable

Random field errors

- Work in progress, modeling issues (slices, girder hierarchies)
- Likely: need low gradient spread among dipoles \rightarrow shunt to gradients

Misalignments

- Similar to updated model for 3 GeV ring
- Results indicate no DA problems

Systematic field errors

- Analytic estimates indicate chosen PS's reasonable

Random field errors

- Work in progress, modeling issues (slices, girder hierarchies)
- Likely: need low gradient spread among dipoles \rightarrow shunt to gradients

Systematic / random multipole errors

- Same model as for 3 GeV ring, so far no problems
- To-do: include systematic contributions per magnet design report (crosstalk)

APAC'01, THP017

Misalignments

- Similar to updated model for 3 GeV ring
- Results indicate no DA problems

Systematic field errors

- Analytic estimates indicate chosen PS's reasonable

Random field errors

- Work in progress, modeling issues (slices, girder hierarchies)
- Likely: need low gradient spread among dipoles \rightarrow shunt to gradients

Systematic / random multipole errors

- Same model as for 3 GeV ring, so far no problems
- To-do: include systematic contributions per magnet design report (crosstalk)

➡So far, DA including all error sources appears ok

APAC'01, THP017

Misalignments

- Similar to updated model for 3 GeV ring
- Results indicate no DA problems

➡So far, DA including all error sources appears ok

Lattice with SCW

- 3.5 T, 25 x 61 mm, 10.2 mm gap
- Local: optics matching $\rightarrow 4.5\%$ on local gradients via PFS

PAC'II, TUP235

- Global: restore working point (–0.17 on v_y) \rightarrow 0.5% on all gradients via PFS
 - Tune shifts very close to bare lattice \rightarrow comparable tune footprint

Simon C. Leemann 4th MAX IV MAC Meeting, May 29-30, 2012

Lattice with SCW

- 3.5 T, 25 x 61 mm, 10.2 mm gap
- Local: optics matching $\rightarrow 4.5\%$ on local gradients via PFS

PAC'II, TUP235

- Global: restore working point (–0.17 on v_y) $\rightarrow 0.5\%$ on all gradients via PFS
 - Tune shifts very close to bare lattice \rightarrow comparable tune footprint
 - Sufficiently large DA

Lattice with SCW

- 3.5 T, 25 x 61 mm, 10.2 mm gap
- Local: optics matching \rightarrow 4.5% on local gradients via PFS

PAC'11, TUP235

- Global: restore working point (-0.17 on v_y) $\rightarrow 0.5\%$ on all gradients via PFS
 - Tune shifts very close to bare lattice \rightarrow comparable tune footprint
 - Sufficiently large DA

Lattice with SCW

- 3.5 T, 25 x 61 mm, 10.2 mm gap
- Local: optics matching $\rightarrow 4.5\%$ on local gradients via PFS

PAC'II, TUP235

- Global: restore working point (–0.17 on v_y) \rightarrow 0.5% on all gradients via PFS
 - Tune shifts very close to bare lattice \rightarrow comparable tune footprint
 - Sufficiently large DA
- $-\epsilon_0$ = 5.3 nm rad, losses +25.2 keV/turn, δ_{rf} = 3.95%
 - MA & lifetime still fine

Lattice with SCW

Lattice with SCW

- 3.5 T, 25 x 61 mm, 10.2 mm gap
- Local: optics matching $\rightarrow 4.5\%$ on local gradients via PFS

- Global: restore working point (–0.17 on v_y) $\rightarrow 0.5\%$ on all gradients via PFS
 - Tune shifts very close to bare lattice \rightarrow comparable tune footprint
 - Sufficiently large DA
- $-\epsilon_0 = 5.3$ nm rad, losses +25.2 keV/turn, $\delta_{rf} = 3.95\%$
 - MA & lifetime still fine (Touschek 6.4h / 23.7 h)

Lattice with EPU

− IPAC'12: A. Wawrzyniak et al., TUPPC025 → effect of EPU96 on optics comparable to SCW → EPU96 appears manageable

Lattice with SCW

- 3.5 T, 25 x 61 mm, 10.2 mm gap
- Local: optics matching $\rightarrow 4.5\%$ on local gradients via PFS

- Global: restore working point (–0.17 on v_y) \rightarrow 0.5% on all gradients via PFS
 - Tune shifts very close to bare lattice \rightarrow comparable tune footprint
 - Sufficiently large DA
- $-\epsilon_0$ = 5.3 nm rad, losses +25.2 keV/turn, δ_{rf} = 3.95%
 - MA & lifetime still fine (Touschek 6.4h / 23.7 h)

Lattice with EPU

− IPAC'12: A. Wawrzyniak et al., TUPPC025 → effect of EPU96 on optics comparable to SCW → EPU96 appears manageable

Work in progress

- No show-stoppers discovered so far
- But we see need for strong (local) tuning to properly match strong ID's
- Narrow-gap chambers? In-vacuum ID's? Vertical acceptance?

Modified optics → update injection (retaining strategy)

Injection

Modified optics → update injection (retaining strategy)

Pulsed sextupole magnet (PSM) for top-up injection

- Excellent performance: high capture efficiency, transparent to users
- But tricky in new machine? \rightarrow want robust injection for commissioning

Single dipole kicker (KI) for commissioning

User operation: single dipole kicker becomes horizontal pinger (adjacent dedicated vertical pinger)

Injection

Modified optics → update injection (retaining strategy)

Pulsed sextupole magnet (PSM) for top-up injection

- Excellent performance: high capture efficiency, transparent to users
- But tricky in new machine? \rightarrow want robust injection for commissioning

Single dipole kicker (KI) for commissioning

User operation: single dipole kicker becomes horizontal pinger (adjacent dedicated vertical pinger)

Injection

Modified optics → update injection (retaining strategy)

Pulsed sextupole magnet (PSM) for top-up injection

- Excellent performance: high capture efficiency, transparent to users
- But tricky in new machine? \rightarrow want robust injection for commissioning

Single dipole kicker (KI) for commissioning

User operation: single dipole kicker becomes horizontal pinger (adjacent dedicated vertical pinger)

PRST-AB **I5**, 050705 (2012)

PRST-AB **15**, 050705 (2012)

Optimum settings: (b₃L) = 74 m⁻² for θ_{pm} = +2.36 mrad

PRST-AB **15**, 050705 (2012)

Optimum settings: (b₃L) = 74 m⁻² for θ_{pm} = +2.36 mrad

PRST-AB **15**, 050705 (2012)

Error tolerance: bunch energy spread increased to σ_{δ} = 1.8%

PRST-AB **15**, 050705 (2012)

Error tolerance: bunch emittance increase (4-fold) / optics mismatch

PRST-AB **15**, 050705 (2012)

Reduced strength: (b₃L) = 27 m⁻² for θ_{pm} = +0.85 mrad

PRST-AB **15**, 050705 (2012)

Two-turn injection with reduced strength: (b₃L) = 59 m⁻² for θ_{pm} = +1.9 mrad

Submitted to NIM-A

Submitted to NIM-A

On-axis injection: θ_{ki} = +2.9 mrad (inject at -0.84 mrad)

Submitted to NIM-A

Standard injection: θ_{ki} = +2.4 mrad

Submitted to NIM-A

Optimum settings: θ_{ki} = +2.4 mrad

Submitted to NIM-A

Error tolerance: bunch energy spread increased to σ_{δ} = 2.0%

Submitted to NIM-A

Error tolerance: bunch emittance increase (3-fold) / optics mismatch

Submitted to NIM-A

Reduced strength θ_{ki} = +1.4 mrad \rightarrow allows for accumulation!

"Where's the Beef?"

- DDR Chapter 3: "MAX IV 1.5 GeV Storage Ring" http://www.maxlab.lu.se/maxlab/max4/DDR_public
- MAX-lab Internal Note 20120313: "Updates to the MAX IV 1.5 GeV Storage Ring Lattice" <u>http://www.maxlab.lu.se/maxlab/max4/max_iv_reports_public</u>
- Lattice m5-20120313-521-bare.lat & m5-20120313-523-bare.lat http://www.maxlab.lu.se/maxlab/max4/max_iv_reports_public
- Effect of strong ID's on lattice optimization: IPAC'12, TUPPC025 <u>http://www.ipac12.org/proceedings.htm</u>
- Pulsed sextupole injection into MAX IV rings: PRST-AB 15 050705 (2012) <u>http://prst-ab.aps.org/abstract/PRSTAB/v15/i5/e050705</u>

