MAX IV 1.5 GeV Storage Ring
Recent Developments in Lattice, Optics, and Beam Dynamics
Reminder: 1.5 GeV Storage Ring

“No problem is too small or too trivial if we can really do something about it.”
— Richard P. Feynman
Outline

• Recent lattice/model modifications
• Updated linear optics
• Updated nonlinear optics
• Realistic performance: ID’s & errors
• Injection: single dipole kicker & pulsed sextupole magnet

1.5 GeV
12-fold DBA lattice
96 m circumference
12 × 3.5 m straights
10 straights for ID’s
$\varepsilon_0 = 5.982 \text{ nm rad}$
Lattice Modifications

• **Lattice model completed**
 – Pingers, dipole kicker, and PSM included

• **Magnet engineering feedback**
 – Shifted sextupoles to make room for coils & field clamps
 – Hard-edge magnet lengths closer to mechanical lengths

• **Vacuum engineering feedback**
 – Realistic vacuum apertures in model (incl. septum)

• **Slice model**
 – 28 slices to model gradient dipoles
 – 3/4 slices to model focusing quads with sextupole component
 ➔ Longitudinal field profiles properly modeled (can also include crosstalk and systematic multipoles)

➡ Restore linear optics, re-optimize nonlinear optics, revisit injection, verify expected performance...
Updated Linear Optics (1)

• Gradient dipoles
• Focusing quadrupoles contain sextupole component
• Discrete sextupoles for defocusing
Updated Linear Optics (2)

• Corrections
 – Pole-face strips to correct focusing gradient in dipoles
 – Correction sextupoles for correction of sextupole component in iron
 – Dipole corrector coils on SCi/o
 – Extra windings on SCi/o (skew quads, aux. sext) and SDi/o(aux. sext)
 – BBC: active shunts on SQFi/o (in addition to regular shunts)
• Original design optics restored
 ➡ Several iterations with magnet design in order to get ratios right
• Vertical tune 3.14 ➔ 3.15 (nonlinear optics optimization)

\begin{align*}
\varepsilon_0 &= 5.982 \text{ nm rad} \\
\nu_x &= 11.22 \\
\nu_y &= 3.15 \\
\xi_x &= -22.964 \\
\xi_y &= -17.154 \\
\sigma_x^* &= 184 \mu\text{m} \\
\sigma_y^* &= 13 \mu\text{m} \\
\eta_x^* &= 33 \text{ cm}
\end{align*}
Updated Nonlinear Optics

• Follow “standard MAX IV“ optimization process:
 – Correct natural chromaticities
 – Minimize RDT’s via weighted SVD
 – Tailor tune shifts over relevant range by tweaking \((b_3L)\)
 – Adjust linear optics (if necessary)
 – Verify (DA, MA, FMA, etc.)
 – Iterate...

PRST-AB 12, 120701 (2009)
PRST-AB 14, 030701 (2011)
Updated Nonlinear Optics

• Follow “standard MAX IV“ optimization process:
 – Correct natural chromaticities
 – Minimize RDT’s via weighted SVD
 – Tailor tune shifts over relevant range by tweaking (b_3L)
 – Adjust linear optics (if necessary)
 – Verify (DA, MA, FMA, etc.)
 – Iterate...

• In iron: 521 nonlinear optics, $\xi_{x,y} = +2.0$

• User operation: 523 nonlin. optics using SCi/o, $\xi_{x,y} = +1.0$
 – Reduce chromatic and amplitude-dependent tune shifts

PRST-AB 12, 120701 (2009)
PRST-AB 14, 030701 (2011)
Follow “standard MAX IV“ optimization process:

- Correct natural chromaticities
- Minimize RDT’s via weighted SVD
- Tailor tune shifts over relevant range by tweaking \(b_3 L \)
- Adjust linear optics (if necessary)
- Verify (DA, MA, FMA, etc.)
- Iterate...

In iron: 521 nonlinear optics, \(\xi_{x,y} = +2.0 \)

User operation: 523 nonlin. optics using SCi/o, \(\xi_{x,y} = +1.0 \)

Reduce chromatic and amplitude-dependent tune shifts

![Graph showing amplitude excursion vs. displacement]

PRST-AB 12, 120701 (2009)
PRST-AB 14, 030701 (2011)
Follow “standard MAX IV“ optimization process:

- Correct natural chromaticities
- Minimize RDT’s via weighted SVD
- Tailor tune shifts over relevant range by tweaking \(b_3L \)
- Adjust linear optics (if necessary)
- Verify (DA, MA, FMA, etc.)
- Iterate...

In iron: 521 nonlinear optics, \(\xi_{x,y} = +2.0 \)

User operation: 523 nonlin. optics using SCi/o, \(\xi_{x,y} = +1.0 \)

Reduce chromatic and amplitude-dependent tune shifts

Simon C. Leemann

4th MAX IV MAC Meeting, May 29-30, 2012
Follow “standard MAX IV“ optimization process:

- Correct natural chromaticities
- Minimize RDT’s via weighted SVD
- Tailor tune shifts over relevant range by tweaking \(b_3L \)
- Adjust linear optics (if necessary)
- Verify (DA, MA, FMA, etc.)
- Iterate...

In iron: 521 nonlinear optics,
\(\xi_{x,y} = +2.0 \)

User operation: 523 nonlin. optics using SCi/o,
\(\xi_{x,y} = +1.0 \)

- Reduce chromatic and amplitude-dependent tune shifts

Simon C. Leemann
4th MAX IV MAC Meeting, May 29-30, 2012

PRST-AB 12, I20701 (2009)
PRST-AB 14, 030701 (2011)
Updated Nonlinear Optics

- Follow “standard MAX IV“ optimization process:
 - Correct natural chromaticities
 - Minimize RDT’s via weighted SVD
 - Tailor tune shifts over relevant range by tweaking \(b_3 L \)
 - Adjust linear optics (if necessary)
 - Verify (DA, MA, FMA, etc.)
 - Iterate...

- In iron: 521 nonlinear optics, \(\xi_{x,y} = +2.0 \)

- User operation: 523 nonlin. optics using SCi/o, \(\xi_{x,y} = +1.0 \)
 - Reduce chromatic and amplitude-dependent tune shifts
 - Compact tune footprint clear of potentially dangerous resonances
• Follow “standard MAX IV“ optimization process:
 – Correct natural chromaticities
 – Minimize RDT’s via weighted SVD
 – Tailor tune shifts over relevant range by tweaking (b^3_L)
 – Adjust linear optics (if necessary)
 – Verify (DA, MA, FMA, etc.)
 – Iterate...

• In iron: 521 nonlinear optics, $\xi_{x,y} = +2.0$
• User operation: 523 nonlin. optics using SCi/o, $\xi_{x,y} = +1.0$
• Reduce chromatic and amplitude-dependent tune shifts
 ➡ Compact tune footprint clear of potentially dangerous resonances

Simon C. Leemann

0$^\text{th}$ MAX IV MAC Meeting, May 29-30, 2012

Updated Nonlinear Optics

PRST -AB 12, 120701 (2009)
PRST -AB 14, 030701 (2011)
Updated Nonlinear Optics

• Follow "standard MAX IV" optimization process:
 – Correct natural chromaticities
 – Minimize RDT's via weighted SVD
 – Tailor tune shifts over relevant range by tweaking \((b_3L) \)
 – Adjust linear optics (if necessary)
 – Verify (DA, MA, FMA, etc.)
 – Iterate...

• In iron: 521 nonlinear optics, \(\xi_{x,y} = +2.0 \)

• User operation: 523 nonlin. optics using SCi/o, \(\xi_{x,y} = +1.0 \)
 – Reduce chromatic and amplitude-dependent tune shifts
 ➡ Compact tune footprint clear of potentially dangerous resonances
 ➡ Large DA, large off-momentum DA (confirmed with FMA)
Follow "standard MAX IV" optimization process:

- Correct natural chromaticities
- Minimize RDT's via weighted SVD
- Tailor tune shifts over relevant range by tweaking b_3
- Adjust linear optics (if necessary)
- Verify (DA, MA, FMA, etc.)
- Iterate...

In iron: 521 nonlinear optics, $\xi_{x,y} = +2.0$

User operation: 523 nonlin. optics using SCi/o, $\xi_{x,y} = +1.0$

- Reduce chromatic and amplitude-dependent tune shifts
 ➡ Compact tune footprint clear of potentially dangerous resonances
 ➡ Large DA, large off-momentum DA (confirmed with FMA)

Updated Nonlinear Optics

References:
- PRST-AB 12, 120701 (2009)
- PRST-AB 14, 030701 (2011)

Dynamic Aperture, $\delta = 0.0\%$
Dynamic Aperture, $\delta = +4.0\%$
Dynamic Aperture, $\delta = -4.0\%$
Vacuum Chamber
Physical Aperture
Required Aperture
Follow "standard MAX IV" optimization process:
- Correct natural chromaticities
- Minimize RDT's via weighted SVD
- Tailor tune shifts over relevant range by tweaking \(b^3 \)
- Adjust linear optics (if necessary)
- Verify (DA, MA, FMA, etc.)
- Iterate...

- In iron: 521 nonlinear optics, \(\xi_{x,y} = +2.0 \)
- User operation: 523 nonlin. optics using SCi/o, \(\xi_{x,y} = +1.0 \)

- Reduce chromatic and amplitude-dependent tune shifts ➡ Compact tune footprint clear of potentially dangerous resonances ➡ Large DA, large off-momentum DA (confirmed with FMA)
Follow "standard MAX IV" optimization process:

- Correct natural chromaticities
- Minimize RDT's via weighted SVD
- Tailor tune shifts over relevant range by tweaking \(b_3 \)
- Adjust linear optics (if necessary)
- Verify (DA, MA, FMA, etc.)
- Iterate...

In iron: 521 nonlinear optics, \(\xi_{x,y} = +2.0 \)

User operation: 523 nonlin. optics using SCi/o, \(\xi_{x,y} = +1.0 \)

- Reduce chromatic and amplitude-dependent tune shifts
 ➡ Compact tune footprint clear of potentially dangerous resonances
 ➡ Large DA, large off-momentum DA (confirmed with FMA)
Updated Nonlinear Optics

• Follow “standard MAX IV“ optimization process:
 – Correct natural chromaticities
 – Minimize RDT’s via weighted SVD
 – Tailor tune shifts over relevant range by tweaking \(b_3L \)
 – Adjust linear optics (if necessary)
 – Verify (DA, MA, FMA, etc.)
 – Iterate...

• In iron: 521 nonlinear optics, \(\xi_{x,y} = +2.0 \)
• User operation: 523 nonlin. optics using SCi/o, \(\xi_{x,y} = +1.0 \)
 – Reduce chromatic and amplitude-dependent tune shifts
 ➤ Compact tune footprint clear of potentially dangerous resonances
 ➤ Large DA, large off-momentum DA (confirmed with FMA)
 ➤ Large momentum acceptance (MA)

PRST-AB 12, 120701 (2009)
PRST-AB 14, 030701 (2011)
Follow "standard MAX IV" optimization process:

- Correct natural chromaticities
- Minimize RDT's via weighted SVD
- Tailor tune shifts over relevant range by tweaking $(b_3 L)$
- Adjust linear optics (if necessary)
- Verify (DA, MA, FMA, etc.)
- Iterate...

In iron: 521 nonlinear optics,$\xi_{x,y} = +2.0$

User operation: 523 nonlin. optics using SCi/o,$\xi_{x,y} = +1.0$

- Reduce chromatic and amplitude-dependent tune shifts
- Compact tune footprint clear of potentially dangerous resonances
- Large DA, large off-momentum DA (confirmed with FMA)
- Large momentum acceptance (MA)

Simon C. Leemann
4th MAX IV MAC Meeting, May 29-30, 2012
Updated Nonlinear Optics

• Follow “standard MAX IV“ optimization process:
 – Correct natural chromaticities
 – Minimize RDT’s via weighted SVD
 – Tailor tune shifts over relevant range by tweaking $(b_3 L)$
 – Adjust linear optics (if necessary)
 – Verify (DA, MA, FMA, etc.)
 – Iterate...

• In iron: 521 nonlinear optics, $\xi_{x,y} = +2.0$

• User operation: 523 nonlin. optics using SCi/o, $\xi_{x,y} = +1.0$
 – Reduce chromatic and amplitude-dependent tune shifts
 ➤ Compact tune footprint clear of potentially dangerous resonances
 ➤ Large DA, large off-momentum DA (confirmed with FMA)
 ➤ Large momentum acceptance (MA)
 ➤ Good Touschek lifetime

PRST-AB 12, 120701 (2009)
PRST-AB 14, 030701 (2011)
Follow "standard MAX IV" optimization process:

- Correct natural chromaticities
- Minimize RDT's via weighted SVD
- Tailor tune shifts over relevant range by tweaking b^3_{L}
- Adjust linear optics (if necessary)
- Verify (DA, MA, FMA, etc.)
- Iterate...

In iron: $521 \text{ nonlin. optics, } \xi_{x,y} = +2.0$

User operation: $523 \text{ nonlin. optics using SCi/o, } \xi_{x,y} = +1.0$

- Reduce chromatic and amplitude-dependent tune shifts

\rightarrow Compact tune footprint clear of potentially dangerous resonances

\rightarrow Large DA, large off-momentum DA (confirmed with FMA)

\rightarrow Large momentum acceptance (MA)

\rightarrow Good Touschek lifetime

Simon C. Leemann
4th MAX IV MAC Meeting, May 29-30, 2012

Updated Nonlinear Optics

PRST -AB 12, 120701 (2009)
PRST -AB 14, 030701 (2011)

τ_{ts} [h] vs U_{cav} [kV]

34 h with LC’s
23 h with LC’s
3.5% \rightarrow \sim 6 h

$\tau_{\text{ts},6D}$, $\tau_{\text{ts},4D}$, δ_{rf}

τ_{ts}, δ_{rf}
Follow "standard MAX IV" optimization process:

- Correct natural chromaticities
- Minimize RDT's via weighted SVD
- Tailor tune shifts over relevant range by tweaking \(b_3 \)
- Adjust linear optics (if necessary)
- Verify (DA, MA, FMA, etc.)
- Iterate...

In iron: 521 nonlinear optics, \(\xi_{x,y} = +2.0 \)

User operation: 523 nonlin. optics using SCi/o, \(\xi_{x,y} = +1.0 \)

- Reduce chromatic and amplitude-dependent tune shifts

➡ Compact tune footprint clear of potentially dangerous resonances
➡ Large DA, large off-momentum DA (confirmed with FMA)
➡ Large momentum acceptance (MA)
➡ Good Touschek lifetime
Realistic Performance

• Is the lattice stable?
• How do perturbed optics behave?
 – Machine with misalignments, field errors & multipole errors
 – Machine with strong ID’s (Solaris) → matching?
Realistic Performance: Errors

• Misalignments
 – Similar to updated model for 3 GeV ring
Realistic Performance: Errors

Misalignments
- Similar to updated model for 3 GeV ring

<table>
<thead>
<tr>
<th></th>
<th>Transverse displacements</th>
<th>Roll error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girders (magnet blocks)</td>
<td>50 micron rms</td>
<td>0.2 mrad rms</td>
</tr>
<tr>
<td>Dipole slices (!)</td>
<td>25 micron rms</td>
<td>0.2 mrad rms</td>
</tr>
<tr>
<td>Quadrupole slices (!)</td>
<td>25 micron rms</td>
<td>0.2 mrad rms</td>
</tr>
<tr>
<td>Sextupoles</td>
<td>25 micron rms</td>
<td>0.2 mrad rms</td>
</tr>
<tr>
<td>Correctors</td>
<td>25 micron rms</td>
<td>0.2 mrad rms</td>
</tr>
<tr>
<td>BPM calibration</td>
<td>3 micron rms</td>
<td>0.1 mrad rms</td>
</tr>
</tbody>
</table>

Gaussian, 2σ cutoff
Realistic Performance: Errors

• **Misalignments**
 - Similar to updated model for 3 GeV ring
 - Results indicate no DA problems
Malignments

- Similar to updated model for 3 GeV ring
- Results indicate no DA problems
Realistic Performance: Errors

• **Misalignments**
 – Similar to updated model for 3 GeV ring
 – Results indicate no DA problems

• **Systematic field errors**
 – Analytic estimates indicate chosen PS’s reasonable
• **Misalignments**
 - Similar to updated model for 3 GeV ring
 - Results indicate no DA problems

• **Systematic field errors**
 - Analytic estimates indicate chosen PS’s reasonable

• Quadrupole gradients:
 - 1 PS for PFS’s, SQFi, and SQFo
 - 10^{-4} jitter on PS will lead to tune jitter of roughly 1×10^{-3} (H/V)

• Sextupole gradients:
 - 1 PS for SQFi, SQFo, SDi, and SDo
 - 10^{-4} jitter on PS will lead to chromaticity jitter below 0.01 (H/V)
Realistic Performance: Errors

• **Misalignments**
 – Similar to updated model for 3 GeV ring
 – Results indicate no DA problems

• **Systematic field errors**
 – Analytic estimates indicate chosen PS’s reasonable

• **Random field errors**
 – Work in progress, modeling issues (slices, girder hierarchies)
 – Likely: need low gradient spread among dipoles → shunt to gradients
Realistic Performance: Errors

• **Misalignments**
 – Similar to updated model for 3 GeV ring
 – Results indicate no DA problems

• **Systematic field errors**
 – Analytic estimates indicate chosen PS’s reasonable

• **Random field errors**
 – Work in progress, modeling issues (slices, girder hierarchies)
 – Likely: need low gradient spread among dipoles → shunt to gradients

• **Systematic / random multipole errors**
 – Same model as for 3 GeV ring, so far no problems
 – To-do: include systematic contributions per magnet design report (crosstalk)
Realistic Performance: Errors

• **Misalignments**
 – Similar to updated model for 3 GeV ring
 – Results indicate no DA problems

• **Systematic field errors**
 – Analytic estimates indicate chosen PS’s reasonable

• **Random field errors**
 – Work in progress, modeling issues (slices, girder hierarchies)
 – Likely: need low gradient spread among dipoles → shunt to gradients

• **Systematic / random multipole errors**
 – Same model as for 3 GeV ring, so far no problems
 – To-do: include systematic contributions per magnet design report (crosstalk)

⇒ So far, DA including all error sources appears ok
Realistic Performance: Errors

• Misalignments
 – Similar to updated model for 3 GeV ring
 – Results indicate no DA problems

= So far, DA including all error sources appears ok
Realistic Performance: ID’s

• Lattice with SCW
 – 3.5 T, 25 x 61 mm, 10.2 mm gap
 – Local: optics matching \rightarrow 4.5% on local gradients via PFS
 – Global: restore working point (−0.17 on v_y) \rightarrow 0.5% on all gradients via PFS
 • Tune shifts very close to bare lattice \rightarrow comparable tune footprint

PAC’11, TUP235
Realistic Performance: ID’s

• Lattice with SCW
 – 3.5 T, 25 x 61 mm, 10.2 mm gap
 – Local: optics matching → 4.5% on local gradients via PFS
 – Global: restore working point (–0.17 on ν_y) → 0.5% on all gradients via PFS

• Tune shifts very close to bare lattice → comparable tune footprint

PAC’11, TUP235
Realistic Performance: ID’s

• Lattice with SCW
 – 3.5 T, 25 x 61 mm, 10.2 mm gap
 – Local: optics matching → 4.5% on local gradients via PFS
 – Global: restore working point (−0.17 on \(v_y \)) → 0.5% on all gradients via PFS
 • Tune shifts very close to bare lattice → comparable tune footprint
 • Sufficiently large DA

PAC’11, TUP235
Realistic Performance: ID’s

- **Lattice with SCW**
 - 3.5 T, 25 x 61 mm, 10.2 mm gap
 - Local: optics matching → 4.5% on local gradients via PFS
 - Global: restore working point (−0.17 on v_y) → 0.5% on all gradients via PFS
 - Tune shifts very close to bare lattice → comparable tune footprint
 - Sufficiently large DA

![Diagram](image)
Realistic Performance: ID’s

• **Lattice with SCW**
 - 3.5 T, 25 x 61 mm, 10.2 mm gap
 - Local: optics matching \(\rightarrow 4.5\%\) on local gradients via PFS
 - Global: restore working point \((-0.17\text{ on } v_y) \rightarrow 0.5\%\) on all gradients via PFS
 - Tune shifts very close to bare lattice \(\rightarrow\) comparable tune footprint
 - Sufficiently large DA
 - \(\varepsilon_0 = 5.3\text{ nm rad, losses }+25.2\text{ keV/turn, }\delta_{rf} = 3.95\%\)
 - MA & lifetime still fine
Lattice with SCW

- Local: optics matching → 4.5% on local gradients via PFS

- Global: restore working point → 0.5% on all gradients via PFS

- Tune shifts very close to bare lattice → comparable tune footprint

- Sufficiently large DA

\[\varepsilon_0 = 5.3 \text{ nm rad}, \text{losses } +25.2 \text{ keV/turn, } \delta_{\text{rf}} = 3.9\% \]

- MA & lifetime still fine

- Overall MA

\[560 \text{ kV, } \delta_{\text{rf}} = 3.95\% \]

\[402 \text{ kV, } \delta_{\text{rf}} = 3.0\% \]

- Touschek lifetime: 6.4h / 23.7 h (LCs)

PAC’11, TUP235

Realistic Performance: ID’s

\[b_{\text{acc}}\%] [s \text{ [m]}]

560 kV, \(\delta_{\text{rf}} = 3.95\% \)

402 kV, \(\delta_{\text{rf}} = 3.0\% \)

Overall MA

Touschek lifetime: 6.4h / 23.7 h (LCs)
Realistic Performance: ID’s

• **Lattice with SCW**
 - 3.5 T, 25 x 61 mm, 10.2 mm gap
 - Local: optics matching → 4.5% on local gradients via PFS
 - Global: restore working point (−0.17 on \(\nu_y \)) → 0.5% on all gradients via PFS
 * Tune shifts very close to bare lattice → comparable tune footprint
 * Sufficiently large DA
 - \(\varepsilon_0 = 5.3 \) nm rad, losses +25.2 keV/turn, \(\delta_{rf} = 3.95\% \)
 * MA & lifetime still fine (Touschek 6.4h / 23.7 h)

• **Lattice with EPU**
 - IPAC’12: A. Wawrzyniak et al., TUPPC025 → effect of EPU96 on optics comparable to SCW → EPU96 appears manageable
Realistic Performance: ID’s

• **Lattice with SCW**
 - 3.5 T, 25 x 61 mm, 10.2 mm gap
 - Local: optics matching \rightarrow 4.5% on local gradients via PFS
 - Global: restore working point (-0.17 on v_y) \rightarrow 0.5% on all gradients via PFS
 - Tune shifts very close to bare lattice \rightarrow comparable tune footprint
 - Sufficiently large DA
 - $\varepsilon_0 = 5.3$ nm rad, losses $+25.2$ keV/turn, $\delta_{rf} = 3.95$
 - MA & lifetime still fine (Touschek 6.4h / 23.7 h)

• **Lattice with EPU**
 - IPAC’12: A. Wawrzyniak et al., TUPPC025 \rightarrow effect of EPU96 on optics comparable to SCW \rightarrow EPU96 appears manageable

• **Work in progress**
 - No show-stoppers discovered so far
 - But we see need for strong (local) tuning to properly match strong ID’s
 - Narrow-gap chambers? In-vacuum ID’s? Vertical acceptance?
• Modified optics → update injection (retaining strategy)
• Modified optics → update injection (retaining strategy)

• Pulsed sextupole magnet (PSM) for top-up injection
 – Excellent performance: high capture efficiency, transparent to users
 – But tricky in new machine? → want robust injection for commissioning

• Single dipole kicker (KI) for commissioning
 – User operation: single dipole kicker becomes horizontal pinger (adjacent dedicated vertical pinger)
Injection

• Modified optics → update injection (retaining strategy)

• Pulsed sextupole magnet (PSM) for top-up injection
 – Excellent performance: high capture efficiency, transparent to users
 – But tricky in new machine? → want robust injection for commissioning

• Single dipole kicker (KI) for commissioning
 – User operation: single dipole kicker becomes horizontal pinger (adjacent dedicated vertical pinger)
Injection

• Modified optics → update injection (retaining strategy)

• Pulsed sextupole magnet (PSM) for top-up injection
 – Excellent performance: high capture efficiency, transparent to users
 – But tricky in new machine? → want robust injection for commissioning

• Single dipole kicker (KI) for commissioning
 – User operation: single dipole kicker becomes horizontal pinger (adjacent dedicated vertical pinger)
Injection: Pulsed Sextupole Magnet
Injection: Pulsed Sextupole Magnet

Optimum settings: \((b_3 L) = 74 \text{ m}^{-2} \) for \(\theta_{pm} = +2.36 \text{ mrad} \)
Optimum settings: $b_3L = 74 \, \text{m}^{-2}$ for $\theta_{pm} = +2.36 \, \text{mrad}$
Injection: Pulsed Sextupole Magnet

Error tolerance: bunch energy spread increased to $\sigma_\delta = 1.8\%$
Injection: Pulsed Sextupole Magnet

Error tolerance: bunch emittance increase (4-fold) / optics mismatch
Injection: Pulsed Sextupole Magnet

Reduced strength: \((b_3L) = 27 \text{ m}^{-2}\) for \(\theta_{pm} = +0.85 \text{ mrad}\)
Injection: Pulsed Sextupole Magnet

Two-turn injection with reduced strength: \((b_3 L) = 59 \text{ m}^2\) for \(\theta_{pm} = +1.9 \text{ mrad}\)
Injection: Single Dipole Kicker

Submitted to NIM-A
Injection: Single Dipole Kicker

On-axis injection: $\theta_{ki} = +2.9\ \text{mrad}$ (inject at $-0.84\ \text{mrad}$)
Injection: Single Dipole Kicker

Standard injection: $\theta_{ki} = +2.4$ mrad
Injection: Single Dipole Kicker

Optimum settings: $\theta_{ki} = +2.4$ mrad
Injection: Single Dipole Kicker

Error tolerance: bunch energy spread increased to $\sigma_\delta = 2.0\%$

Submitted to NIM-A
Injection: Single Dipole Kicker

Error tolerance: bunch emittance increase (3-fold) / optics mismatch
Injection: Single Dipole Kicker

Reduced strength $\theta_{ki} = +1.4$ mrad → allows for accumulation!
“Where’s the Beef?”

- DDR Chapter 3: “MAX IV 1.5 GeV Storage Ring”
 http://www.maxlab.lu.se/maxlab/max4/DDR_public

- MAX-lab Internal Note 20120313: “Updates to the MAX IV 1.5 GeV Storage Ring Lattice”
 http://www.maxlab.lu.se/maxlab/max4/max_iv_reports_public

- Lattice m5-20120313-521-bare.lat & m5-20120313-523-bare.lat
 http://www.maxlab.lu.se/maxlab/max4/max_iv_reports_public

- Effect of strong ID’s on lattice optimization: IPAC’12, TUPPC025
 http://www.ipac12.org/proceedings.htm

- Pulsed sextupole injection into MAX IV rings: PRST-AB 15 050705 (2012)
 http://prst-ab.aps.org/abstract/PRSTAB/v15/i5/e050705