Detailed Design Report

1st MAX MAC Meeting September 1-2, 2010 MAX-lab, Sweden

Chapter 2 MAX IV 3 GeV Storage Ring

Simon C. Leemann

MAX IV Facility

Linear Lattice

- Target: ultralow-emittance SR, sufficient number of IDs
- 3 GeV, 20-fold MBA, 528 m → ε_x = 0.33 nm rad
- DWs further reduce emittance $\rightarrow \epsilon_x \sim 0.17$ nm rad
- MBA: simple (high periodicity), robust (relaxed optics)
 - 7-bend achromat: 5 x 3° (UC) + 2 x 1.5° (MC)
 - 20 long straights (one reserved for injection), 4.8 m
 - 40 short straights (9-12 reserved for RF cavities), 1.3 m

Compact optics → strong focusing, gradient dipoles

- $J_x = 1.86$, $\eta_x < 8$ cm, $\alpha_c = 3x10^{-4}$, $\alpha_2 = 1.3x10^{-4}$

Linear Lattice

- Target: ultralow-emittance SR, sufficient number of IDs
- 3 GeV, 20-fold MBA, 528 m → ε_x = 0.33 nm rad
- DWs further reduce emittance $\rightarrow \epsilon_x \sim 0.17$ nm rad
- MBA: simple (high periodicity), robust (relaxed optics)
 - 7-bend achromat: 5 x 3° (UC) + 2 x 1.5° (MC)
 - 20 long straights (one reserved for injection), 4.8 m
 - 40 short straights (9-12 reserved for RF cavities), 1.3 m

Compact optics → strong focusing, gradient dipoles

Linear Lattice

- Target: ultralow-emit
- •3 GeV, 20-fold MBA, 5
- DWs further reduce e
- •MBA: simple (high pe
 - 7-bend achromat: 5 x 3°
 - 20 long straights (one re
 - 40 short straights (9-12

Compact optics -> strong focusing, gradient dipoles

 Strong-focusing lattice → low dispersion → large natural chromaticity → strong sextupoles

•5 sextupole families (18 sextupoles per MBA)

- Sextupole tuning → chromaticity shaping
- Small chromatic TS → high MA despite small chamber; lattice MA > 4.5%
- Minimize res. driving terms within achromat → minimize ID perturbation

• 3 octupole families (6 octupoles per MBA)

– Minimize ADTS (first-order effect!) → small tune footprint → large DA

 Strong-focusing lattice → low dispersion → large natural chromaticity → strong sextupoles

•5 sextupole families (18 sextupoles per MBA)

- Sextupole tuning → chromaticity shaping
- Small chromatic TS → high MA despite small chamber; lattice MA > 4.5%
- Minimize res. driving terms within achromat → minimize ID perturbation

 Strong-focusing lattice → low dispersion → large natural chromaticity → strong sextupoles

•5 sextupole families (18 sextupoles per MBA)

- Sextupole tuning → chromaticity shaping
- Small chromatic TS → high MA despite small chamber; lattice MA > 4.5%
- Minimize res. driving terms within achromat → minimize ID perturbation

• 3 octupole families (6 octupoles per MBA)

– Minimize ADTS (first-order effect!) → small tune footprint → large DA

 Strong-focusing lattice chromaticity → strong

•5 sextupole families (18

- Sextupole tuning → chromati
- Small chromatic TS → high N
- Minimize res. driving terms v

• 3 octupole families (6 octupoles per MBA)

Minimize ADTS (first-order effect!) → small tune footprint → large DA

- Shunts on dipoles and quadrupoles → reduce field errors to ~ 0.02% rms
- Specify tolerances for ID multipole contribution
- Field errors + multipole errors → sufficient DA
- •DA dominated by misalignment errors → sufficient DA
- Orbit correction:
 - 200 BPMs and dipole corrector pairs (ferrite over stainless)
 - SOFB: global, operate @ 10 Hz (-3dB amplification @ 0.3 Hz) → drifts
 - Phase 2: FOFB: global controller, local orbit control across LSs, operate
 @ 10 kHz (-3dB amplification @ ~ 100 Hz) → cultural noise, gap
 movement
 - Phase 3: Expand FOFB to global control @ 10 kHz

- Shunts on dipoles and quadrupoles → reduce field errors to ~ 0.02% rms
- Specify tolerances for ID multipole contribution
- Field errors + multipole errors → sufficient DA
- DA dominated by misalig
- Orbit correction:
 - 200 BPMs and dipole corrector
 - SOFB: global, operate @ 10 l
 - Phase 2: FOFB: global contro
 @ 10 kHz (-3dB amplification movement
 - Phase 3: Expand FOFB to glc

- Shunts on dipoles and quadrupoles → reduce field errors to ~ 0.02% rms
- Specify tolerances for ID multipole contribution
- Field errors + multipole errors → sufficient DA
- •DA dominated by misalignment errors → sufficient DA
- Orbit correction:
 - 200 BPMs and dipole corrector pairs (ferrite over stainless)
 - SOFB: global, operate @ 10 Hz (-3dB amplification @ 0.3 Hz) → drifts
 - Phase 2: FOFB: global controller, local orbit control across LSs, operate
 @ 10 kHz (-3dB amplification @ ~ 100 Hz) → cultural noise, gap
 movement
 - Phase 3: Expand FOFB to global control @ 10 kHz

- Shunts on dipoles and quadrupoles → reduce field errors to ~ 0.02% rms
- Specify tolerances for ID multipole contribution
- Field errors + multipole errors → sufficient DA
- DA dominated by misalignment errors → sufficient DA
- Orbit correction:
 - 200 BPMs and dipole corrector pairs
 - SOFB: global, operate @ 10 Hz (-3c
 - Phase 2: FOFB: global controller, loc @ 10 kHz (-3dB amplification @ ~ 1 movement
 - Phase 3: Expand FOFB to global co

- Shunts on dipoles and quadrupoles → reduce field errors to ~ 0.02% rms
- Specify tolerances for ID multipole contribution
- Field errors + multipole errors → sufficient DA
- •DA dominated by misalignment errors → sufficient DA
- Orbit correction:
 - 200 BPMs and dipole corrector pairs (ferrite over stainless)
 - SOFB: global, operate @ 10 Hz (-3dB amplification @ 0.3 Hz) → drifts
 - Phase 2: FOFB: global controller, local orbit control across LSs, operate
 @ 10 kHz (-3dB amplification @ ~ 100 Hz) → cultural noise, gap
 movement
 - Phase 3: Expand FOFB to global control @ 10 kHz

Matching Optics to IDs

•Optics in LS:

- Vertical beam size in LS: 2 μ m < σ_y < 6 μ m
- − 1Å diffraction limit → $ε_y$ = 8 pm rad (~ 3% coupling)
- Better matching to photon beam $\rightarrow \epsilon_y \approx 2 \text{ pm rad}$ (~ 1% coupling)

•DWs and strong IVUs:

- Local beta matching (quadrupole doublet in MC) \rightarrow squeeze β_y
- Global tune correction (pole-face strips in dipoles, QF family)
- Nonlinear re-optimization / correction not required

• Electron beam size in ID → coupling / ver. dispersion:

- BPM calibration with respect to sextupole centers → reduce betatron coupling & spurious vertical dispersion
- Skew quadrupole windings:
 - Minimize betatron coupling & spurious vertical dispersion
 - Option: vertical dispersion bumps within achromats to regain lifetime

MBA → compact optics

- Large number of mechanically identical magnets → inexpensive
- Small magnet gaps → low power consumption
- Power in families wherever possible; add floating PS where necessary

Dipoles

- Sector bends ~0.5 T with gradient
- Soft-end dipoles in MC
- ± 12.5 mm good field region
- Pole-face strips → adjust gradient strength

Strong-focusing quadrupoles

- Common 2D profile (designed for max gradient), different lengths
- 25 mm full gap
- Roughly ± 10 mm good field region

MBA → compact optics

- Large number of mechanically ide
- Small magnet gaps → low power
- Power in families wherever possil

Dipoles

- Sector bends ~0.5 T with gradien
- Soft-end dipoles in MC
- ± 12.5 mm good field region
- Pole-face strips → adjust gradient strength

Strong-focusing quadrupoles

- Common 2D profile (designed for max gradient), different lengths
- 25 mm full gap
- Roughly ± 10 mm good field region

MBA → compact optics

- Large number of mechanically identical magnets → inexpensive
- Small magnet gaps → low power consumption
- Power in families wherever possible; add floating PS where necessary

Dipoles

- Sector bends ~0.5 T with gradient
- Soft-end dipoles in MC
- ± 12.5 mm good field region
- Pole-face strips → adjust gradient strength

Strong-focusing quadrupoles

- Common 2D profile (designed for max gradient), different lengths
- 25 mm full gap
- Roughly ± 10 mm good field region

MBA → compact optics

- Large number of mechanically i
- Small magnet gaps → low powe
- Power in families wherever pos

Dipoles

- Sector bends ~0.5 T with gradie
- Soft-end dipoles in MC
- ± 12.5 mm good field region
- Pole-face strips → adjust gradie

Strong-focusing quadrupoles

- Common 2D profile (designed for max gradient), different lengths
- 25 mm full gap
- Roughly ± 10 mm good field region

Sextupoles

- One design for defocusing, one for focusing
- 25 mm full gap
- ± 10-11 mm good field region

Octupoles

- Two designs (25 mm and 30 mm gap)
- Roughly ±10 mm good field region
- Twice as strong as required \rightarrow ADTS tuning \rightarrow DA shaping

Extra windings on sextupoles & octupoles

- Upright quadrupole → beam-based BPM calibration
- Skew quadrupole (dispersive & non-dispersive)
- Auxiliary sextupoles
- Remote switching of powering where required

Dipole correctors

- Ferrite magnets
- Install over stainless steel chamber sections → fast
- No extra dedicated FOFB correctors required

Integrated magnet design

- Excellent alignment
- Reduces amplification factor (correlated misalignments)
- Solid iron magnet blocks = girders → simple concrete supports
- Vibrational EF pushed beyond 100 Hz → minimize displacement

Dipole corrector

- Ferrite magnets
- Install over stainl
- No extra dedicate

Integrated magnet design

- Excellent alignment
- Reduces amplification factor (correlated misalignments)
- Solid iron magnet blocks = girders → simple concrete supports
- Vibrational EF pushed beyond 100 Hz → minimize displacement

Dipole correctors

- Ferrite magnets
- Install over stainless steel chamber sections → fast
- No extra dedicated FOFB correctors required

Integrated magnet design

- Excellent alignment
- Reduces amplification factor (correlated misalignments)
- Solid iron magnet blocks = girders → simple concrete supports
- Vibrational EF pushed beyond 100 Hz → minimize displacement

Dipole correctors

- Ferrite magnets
- Install over stainless steel (
- No extra dedicated FOFB c

Integrated magnet design

- Excellent alignment
- Reduces amplification factor (correlated misalignments)
- Solid iron magnet blocks = girders → simple concrete supports
- Vibrational EF pushed beyond 100 Hz → minimize displacement

RF System

All cavities installed in short straights

100 MHz main RF system

- Improved MAX II/III capacity-loaded cavity design
- 300 kV maximum gap voltage (30 kW Cu losses)
- 6 cavities ensure RF acceptance beyond 4.5% for ID-equipped ring
- Mechanical tuning → elastic deformation
- Low frequency advantages:
 - Achieve high RF acceptance at lower voltages
 - Lower voltage and high coupling of cavities to transmission lines → 60% of electrical power to transmitters is converted to SR
- Higher-order modes:
 - Lowest HOM at 406 MHz, four measured modes can drive CBMI
 - Suppression with damping couplers (capacitive damping from antennas, inductive coupling loops)

RF System

All cavities installed in short straights

100 MHz main RF system

- Improved MAX II/III capacity-loaded cavity design
- 300 kV maximum gap voltage (30 kW Cu losses)
- 6 cavities ensure RF acceptance beyond 4.5% for ID-equipped ring
- Mechanical tuning → elastic deformation
- Low frequency advantages:
 - Achieve high RF acceptance at lower voltages
 - Lower voltage and high coupling of cavities to t 60% of electrical power to transmitters is conve
- Higher-order modes:
 - Lowest HOM at 406 MHz, four measured mode
 - Suppression with damping couplers (capacitive antennas, inductive coupling loops)

RF System

All cavities installed in short straights

100 MHz main RF system

- Improved MAX II/III capacity-loaded cavity design
- 300 kV maximum gap voltage (30 kW Cu losses)
- 6 cavities ensure RF acceptance beyond 4.5% for ID-equipped ring
- Mechanical tuning → elastic deformation
- Low frequency advantages:
 - Achieve high RF acceptance at lower voltages
 - Lower voltage and high coupling of cavities to transmission lines → 60% of electrical power to transmitters is converted to SR
- Higher-order modes:
 - Lowest HOM at 406 MHz, four measured modes can drive CBMI
 - Suppression with damping couplers (capacitive damping from antennas, inductive coupling loops)

RF System (cont.)

RF stations

- 2x 60 kW transmitter
 - Tetrode amplifiers → low power consumption (70% efficiency)
- 3dB hybrid with dummy load
 - Regulate cavity power by phasing → transmitters run at const. power
- 120 kW transmission line with circulator
- High degree of modularity → high reliability

RF System (cont.)

•300 MHz harmonic RF system

- Low RF voltage → warm harmonic cavities
- Capacity-loaded design similar to main cavity → push HOMs to high freq.
- Require ~ 500 kV → three passive LCs
- LCs can stretch ~ by factor 5 (we plan to stretch from 12 to 50 mm)
- Long bunches \rightarrow reduce bunch power spectrum
 - ring more tolerant against HOM instabilities
 - positive effect on RWI

Transfer Line & Injection

- TL is vertical achromatic bend
- 1 m concrete floor between linac tunnel and SR hall
 - quadrupoles, cooling, and cabling installed on slanted girder

• 5° septa plus 20° bends, 6 quads, symmetric layout

- Flexible optics to accommodate to linac optics and injection matching

Transfer Line & Injection (cont.)

•4-kicker injection bump → -8 mm

- 2x 500 mm, -2.7 mrad before/after DIPm
- 2x 100 mm, +0.2 mrad in long straight

Lambertson septum

- derived from MAX I/III design
- 5°, 0.85 T, 2.5 mm blade @ -10 mm
- Septum filter → minimize (and linearize) leak field onto stored beam

Injected beam @ -13.5 mm → < 6 mm oscillation ampl.

Alternative: pulsed sextupole magnet

- Does not require balancing 4-kicker bump
- Retain injection point & position/angle of injected beam
- − PSM one achromat length downstream, I ≈ 300 mm, b₂ ≈ 92 m⁻², τ ≈ 3µs
- Oscillation amplitude < 6.3 mm
- 2-turn option: τ = 7 µs, reduced field strength, < 7.3 mm amplitude

Transfer Line & Injection (cont.)

•4-kicker injection bump → -8 mm

- 2x 500 mm, -2.7 mrad before/after DIPm
- 2x 100 mm, +0.2 mrad in long straight

Lambertson septum

- derived from MAX I/III design
- 5°, 0.85 T, 2.5 mm blade @ -10 mm
- Septum filter → minimize (and linearize) leak field onto stored beam

Injected beam @ -13.5 mm → < 6 mm oscillation ampl.

Alternative: pulsed sextupole magnet

- Does not require balancing 4-kicker bump
- Retain injection point & position/angle of injected beam
- − PSM one achromat length downstream, I ≈ 300 mm, b₂ ≈ 92 m⁻², τ ≈ 3µs
- Oscillation amplitude < 6.3 mm
- 2-turn option: τ = 7 µs, reduced field strength, < 7.3 mm amplitude

Vacuum System

•Challenge:

- Narrow magnet apertures
- Compact lattice leaves little space

Solution: NEG-coated OFHC Cu vacuum chamber

- Narrow chamber, no lumped absorbers, reduce no. of required pumps
- Inner tube diameter 22 mm, conical transitions (10°-20°)
- Outer diameter 24 mm + cooling tube (dipoles)

- Flanges & bellows around LSs and RF cavities
- BPM case is rigid steel body with CF40 flanges
- •Bellow and gate valves are RF-shielded
- Baking
 - NEG activation @ ~200 C, 24 h
 - In-situ bake: remove upper magnet block half, raise chamber into oven

- Flanges & bellows around LSs and RF cavities
- BPM case is rigid steel body with CF40 flanges
- Bellow and gate valves are RF-shielded
- Baking
 - NEG activation @ ~200 (
 - In-situ bake: remove upp

- Flanges & bellows around LSs and RF cavities
- BPM case is rigid steel body with CF40 flanges
- •Bellow and gate valves are RF-shielded
- Baking
 - NEG activation @ ~200 C, 24 h
 - In-situ bake: remove upper magnet block half, raise chamber into oven

- Flanges & bellows around LSs and RF cavities
- •BPM case is rigid steel body with CF40 flanges
- Bellow and gate valves are RF-shielded
- Baking
 - NEG activa
 - In-situ bak

- Flanges & bellows around LSs and RF cavities
- BPM case is rigid steel body with CF40 flanges
- •Bellow and gate valves are RF-shielded
- Baking
 - NEG activation @ ~200 C, 24 h
 - In-situ bake: remove upper magnet block half, raise chamber into oven

- Flanges & bellows around LSs and RF cavities
- BPM case is rigid steel body with CF40 flanges
- Bellow and gate valves are RF-shielded
- Baking
 - NEG activation @ ~200 C, 24 h
 - In-situ bake: remove upper magnet block half, raise chamber into oven

Special geometry

- Keyhole chambers for photon extraction
- Crotch chamber in short straights
- Kicker and septum chambers
- Stripline and scraper chambers
- Tapering to RF cavities
- Diagnostic beamlines
- ID chambers

Photon beamlines

- Absorbers, gate valves, cooled apertures

Vacuum diagnostics

- Gamma detectors, radiation monitors
- Ion pump currents
- RGA (as part of the turbo pump stand)

Beam Diagnostics

Beam position

- Resolve ~ 0.2 μm @ 500 mA for ~ 10 ms sampling time
- Need also: "commissioning mode"
 - short, weak pulse (~ 300 pC, 1 ns)
 - TxT measurement, however with relaxed accuracy
- Further requirements: time stamping (synchronized to machine clock), post mortem input, interlock output, support for Tango CS
- State of the art (commercial) digital BPM solutions fulfill requirements
- Hybrid solution possible:
 - Fast digital BPMs flanking straight sections
 - Inexpensive slower BPM electronics within the achromats
 - Spare fast units can be used for commissioning

• Tune measurement

- Stripline pair + spectrum analyzer (parasitic measurement possible)
- Button BPM signal + Fourier analysis (larger perturbation)

Beam Diagnostics (cont.)

Current measurement

- DCCT delivers 10⁻⁴ accuracy
- BPM sum signal can be used to determine lifetime (if calibrated by DCCT, can also be used for current measurement)

Emittance monitor

- 2D beam image available online at all times
- Vertical beam size from π -polarization method (UV-vis. ver. polar. SR)
- System is already operational @ SLS
- Install two monitors: dispersive monitor → energy spread

Bunch length monitor

Streak camera or fast photodiode (expected rms ~ 170 ps)

Filling pattern monitor → homogeneous filling (top-up)

- − BPM front-end → sub- μ m stability
- IBS → transverse distribution, lifetime

Beam Diagnostics (cont.)

Scrapers

- Gas lifetime calibration (→ Touschek lifetime measurement)
- Vertical acceptance measurement
- ID protection + loss concentrator
- Determine overall dynamic MA with horizontal scraper

Pinger magnets

- Strong single-turn kickers synchronized with TxT BPM read-out
- Tune measurement
- Nonlinear characterization (demonstrated e.g. Diamond)

Beam loss monitors

- Global fiber optic system (@ MAX-FEL) → beam loss location along SR
- Local measurement methods:
 - PIN diode detectors
 - Scintillator setup (coincidence measurement → resonant spin depolarization → energy calibration)

Beam Diagnostics (cont.)

Temperature sensors (absorber-free vacuum system)

Beam dynamics characterization

- MATLAB Middle Layer (with interface to Tango CS)
- Accelerator Toolbox → modeling, simulation
- LOCO (through MML) → response matrix , BPM offset calibration, beta functions, dispersion
- Chromaticity from tune measurements at $E+\Delta E$

Nonlinear optics characterization

- Spectral analysis of TxT BPM data after pinger excitation
- Analogous to LOCO-approach: calibrate nonlinear machine model

•MAX IV 3 GeV SR is IBS-limited

•Reduce IBS emittance blowup → ultralow emittance

- LCs → stretch bunches → dilute charge density → reduce IBS blowup
- DWs → increase bunch energy spread → reduce IBS blowup

"Paradox": Touschek lifetime large despite ultralow emittance and high stored current

- Emittance reduction → lifetime improvement
 - DWs and LCs pay off twice (direct effect & indirect effect via IBS)

MAX IV 3 GeV SR is IBS-limited

•Reduce IBS emittance blowup → ultralow emittance

- LCs → stretch bunches → dilute charge density → reduce IBS blowup
- DWs → increase bunch energy spread → reduce IBS blowup

•MAX IV 3 GeV SR is IBS-limited

•Reduce IBS emittance blowup → ultralow emittance

- LCs → stretch bunches → dilute charge density → reduce IBS blowup
- DWs → increase bunch energy spread → reduce IBS blowup

"Paradox": Touschek lifetime large despite ultralow emittance and high stored current

- Emittance reduction → lifetime improvement
 - DWs and LCs pay off twice (direct effect & indirect effect via IBS)

 "Paradox": Touschek lifetime large despite ultralow emittance and high stored current

- Emittance reduction -> lifetime improvement
 - DWs and LCs pay off twice (direct effect & indirect effect via IBS)

Intrabeam Scattering & Lifetime (cont.)

Gas lifetimes

- Assume 2 pb CO rest gas; vertical aperture limitation from strong IVU
- Elastic scattering: 25.4 h
- Bremsstrahlung: 56.1 h (weak dependence on MA; here 4.5%)

Touschek lifetime

- 500 mA, 176 bunches, realistic vacuum chamber
- 6D Tracking in Tracy-3 including IBS, set ε_y = 8 pm rad
- Tracking studies for various configurations:
 - Different ID configurations and U_{cav} , but $\delta_{RF} > 4\%$ always
 - "Worst case": 4 PMDW + 10 IVU, 4% RF MA τ_{ts} = 25.5 h → τ_{tot} = 10.3 h
 - Typical: τ_{ts} = 39.5 h \rightarrow τ_{tot} = 12.1 h
- Top-up: 5 mA deadband (1%) → 8.8 nC top-up shot every 7 min