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What’s the Storage Ring Energy?

• Per’s presentation raised an interesting question: how can 
you accurately determine the storage ring energy?
– “accurate”, i.e. better than dipole field measurement data (~10-3)

• Resonant spin depolarization delivers such a calibration
– expect accuracy on a ~ 10-5 – 10-6 level

• Why would we need that kind of energy resolution?
– Frequency feedbacks usually part of (or interleaved with) OFB
– Undulator spectra can be fitted to reveal energy

– So in the end... who cares at all?
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Why Resonant Spin Depolarization?

• Calibrated machine model ➙ “l’art pour l’art”?
• OK, but what about momentum compaction?

– Control of momentum compaction, particularly nonlinear momentum 
compaction, is crucial to reach very short bunches (THz, ...)

– In order to control it, we need to measure it first
– Determining momentum compaction requires measuring an energy shift as 

a function of RF detuning
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• At MAX-lab we usually don’t care too much for short 
bunches in storage rings, but...
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• At MAX-lab we usually don’t care too much for short 
bunches in storage rings, but...

• When do you ever get a chance to see the quantum nature 
of anything?
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QM in action!

SLS, 2001
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RSD in a Nutshell

• Electrons in a storage ring gradually polarize along the 
guiding dipole field, i.e. their spins tend to align 
antiparallel to the bending magnet field

• In general, spin vectors precess around this axis with a 
frequency directly proportional to the electron energy

• If we kick the spins into the machine plane
in resonance with this precession, the
beam will depolarize

• Detect depolarizing frequency ➙ beam energy
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Spin Dynamics in Electron Storage Rings

• Ternov, Loskutov and Korovina,1961: spin-flip radiation
– While being radially accelerated electrons emit photons which carry a spin
– After emitting a photon, electron’s spin can flip (only 10-11 of emitted power!)
– Nevertheless, there are two unequal spin flip rates

– This inequality breaks the symmetry leading to a net build-up of polarization
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Spin Dynamics in Electron Storage Rings

• Ternov, Loskutov and Korovina,1961: spin-flip radiation
– While being radially accelerated electrons emit photons which carry a spin
– After emitting a photon, electron’s spin can flip (only 10-11 of emitted power!)
– Nevertheless, there are two unequal spin flip rates

– This inequality breaks the symmetry leading to a net build-up of polarization

• Sokolov-Ternov polarization level
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Spin Dynamics in Electron Storage Rings

• Sokolov-Ternov polarization level

• With a characteristic build-up time
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Spin Dynamics in Electron Storage Rings

• Sokolov-Ternov polarization level

• With a characteristic build-up time

• So the polarization level in the ring can be expressed as
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Spin Dynamics in Electron Storage Rings

• Sokolov-Ternov polarization level

• With a characteristic build-up time

• So the polarization level in the ring can be expressed as

• But in a real storage ring things are a bit more 
complicated... (as always)
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• Electron’s spin interacts with magnetic fields via the 
magnetic moment associated with the spin, i.e.

– where g is the anomalous magnetic moment of the electron
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• Electron’s spin interacts with magnetic fields via the 
magnetic moment associated with the spin, i.e.

– where g is the anomalous magnetic moment of the electron

• In a storage ring the electron spins precess
around the guiding dipole field

– with the angular velocity (Thomas precession)

Simon C. Leemann
Accelerator Physics Meeting, September 21, 2012

Spin Dynamics in Electron Storage Rings
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Spin Dynamics in Electron Storage Rings

• Relativistic electrons in lab frame

• Bargman, Michel, Telegdy, 1959: Thomas-BMT equation

• So in reality, need to perform spin tracking
along closed orbit
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• Relativistic electrons in lab frame

• Bargman, Michel, Telegdy, 1959: Thomas-BMT equation

• So in reality, need to perform spin tracking
along closed orbit

• But ideal ring has only B⊥

Simon C. Leemann
Accelerator Physics Meeting, September 21, 2012

Spin Dynamics in Electron Storage Rings
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• In the experiment: excellent machine alignment & 
accurate (vertical) BPM calibration ➙ minimize 
horizontal field components ➙ high degree of 
polarization

• Spin precession is proportional to revolution frequency

• So we can define a spin tune

• If we measure this spin tune, we know the energy
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Spin Dynamics in Electron Storage Rings

• But how do we measure the spin precession frequency?
– kick spins into machine plane
– if this is done in resonance with precession, polarization will collapse
– polarization collapse measured via Touschek scattering

• Touschek scattering ➙ Möller scattering cross-section

– if polarization collapses, Touschek scattering cross-section increases

→ Touschek lifetime drops
→ Touschek losses increase (Touschek losses come in pairs!)
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Example: RSD Measurement Campaign

• Campaign carried out at SLS, 2001-2002
• Goals:

– calibrate energy with better accuracy than previous Hall probe 
measurements of dipoles

– verify if SLS energy was actually 1% too high (as indicated by beam-based 
quadrupole and sextupole adjustments during commissioning)

– measure nonlinear momentum compaction and compare to model values
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• Step #1: Verify Touschek-dominated beam
• Step #2: Verify high degree of stored beam polarization
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Example: RSD Measurement Campaign

⌧p = 1873 s

Theory for (perfect) SLS:

From fit to measured I𝞽 data:

Actual polarization level:

⌧p = (1837± 1) s

⌧̂p = 1873s

P0 = PST
⌧p

⌧̂p
= 91%

SLS, 2001



• Step #1: Verify Touschek-dominated beam
• Step #2: Verify high degree of stored beam polarization
• Step #3: Find the depolarizing resonance

– Feed sinusoidal excitation to vertical kicker magnet
– Sweep excitation frequency over interval around expected depolarizing 

resonance
– Record I×𝞽 and loss monitor coincidence signal
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⌧p = 1873 s

Resonance candidate 
observed around 580 kHz

SLS, 2001
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• Step #1: Verify Touschek-dominated beam
• Step #2: Verify high degree of stored beam polarization
• Step #3: Find the depolarizing resonance

– Feed sinusoidal excitation to vertical kicker magnet
– Sweep excitation frequency over interval around expected depolarizing 

resonance
– Record I×𝞽 and loss monitor coincidence signal

• Step #4: Calibrate storage ring energy
– Map excitation frequency to storage ring energy
– Froisart-Stora fit for resonance crossing ➔  E, ΔE

• Step #5: Worry about subtleties
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• Step #1: Verify Touschek-dominated beam
• Step #2: Verify high degree of stored beam polarization
• Step #3: Find the depolarizing resonance

– Feed sinusoidal excitation to vertical kicker magnet
– Sweep excitation frequency over interval around expected depolarizing 

resonance
– Record I×𝞽 and loss monitor coincidence signal

• Step #4: Calibrate storage ring energy
– Map excitation frequency to storage ring energy
– Froisart-Stora fit for resonance crossing ➔  E, ΔE

• Step #5: Worry about subtleties
– synchrotron sidebands
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• Step #1: Verify Touschek-dominated beam
• Step #2: Verify high degree of stored beam polarization
• Step #3: Find the depolarizing resonance

– Feed sinusoidal excitation to vertical kicker magnet
– Sweep excitation frequency over interval around expected depolarizing 

resonance
– Record I×𝞽 and loss monitor coincidence signal

• Step #4: Calibrate storage ring energy
– Map excitation frequency to storage ring energy
– Froisart-Stora fit for resonance crossing ➔  E, ΔE

• Step #5: Worry about subtleties
– synchrotron sidebands, mirror resonances (Nyquist!), ...
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Example: RSD Measurement Campaign

• Finally: 10-5 accuracy of energy calibration allows 
investigation of nonlinearity of momentum compaction

SLS, 2002
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Example: RSD Measurement Campaign

• Finally: 10-5 accuracy of energy calibration allows 
investigation of nonlinearity of momentum compaction

• This method (originally used in high-energy lepton rings) 
has by now been successfully applied at several light 
sources
– BESSY II
– ALS
– SLS
– ANKA
– DIAMOND
– Australian Synchrotron
– ...and most recently at SOLEIL


