

100keV Gun Test Stand

Design and Parameter Study

Internal Note SLS-TME-TA-2004-0244 http://slsbd.psi.ch/pub/slsnotes/

• Gun Geometries

PAUL SCHERRER INSTITUT

- Parameter Studies
 - Solenoid Field
 - Diode Gap
 - Bunch Charge
 - Bunch Length
 - Active Emitter Area
- Scaling Laws and Extrapolation
- Projected Emittance and Slice Emittance
- Conclusions

• Gun Geometries

PAUL SCHERRER INSTITUT

- Parameter Studies
 - Solenoid Field
 - Diode Gap
 - Bunch Charge
 - Bunch Length
 - Active Emitter Area
- Scaling Laws Extrapolation
- Projected Emittance and Slice Emittance

The First Gun Design Suggestion

Peak Electric Field Strength

A Simplified Design

Optimizing the Cathode Tilt Angle

The Resulting Improved Design

• Gun Geometries

- Parameter Studies
 - Solenoid Field
 - Diode Gap
 - Bunch Charge
 - Bunch Length
 - Active Emitter Area
- Scaling Laws and Extrapolation
- Projected Emittance and Slice Emittance

Input Parameters

• Cathode Potential: -100kV

PAUL SCHERRER INSTITUT

- Active Emitter Radius: $r_{act} = 100 \mu m$
- Pulse: Gaussian, cut-off at $\pm 3\sigma_t$, $\sigma_t = 20$ ps, Q $\approx -5^{-10^{-12}}$ C ($\hat{I} = 100$ mA)
- Initial Energy: $\gamma_0 = 1.0001$, initial divergence is set to zero
- Iris: r_{iris}=500μm
- Tracked Macro-Particles: N=20000
- Tracked Path: From the cathode surface at z₀=1mm to the end of the drift section at z=342mm

• Gun Geometries

PAUL SCHERRER INSTITUT

- Parameter Studies
 - Solenoid Field
 - Diode Gap
 - Bunch Charge
 - Bunch Length
 - Active Emitter Area
- Scaling Laws and Extrapolation
- Projected Emittance and Slice Emittance

Applying a Solenoid Field (1)

Applying a Solenoid Field (2)

Applying a Solenoid Field (5)

Applying a Solenoid Field (6)

Applying a Solenoid Field (8)

• Gun Geometries

- Parameter Studies
 - Solenoid Field
 - Diode Gap
 - Bunch Charge
 - Bunch Length
 - Active Emitter Area
- Scaling Laws and Extrapolation
- Projected Emittance and Slice Emittance

Varying the Gap (I)

Simon C. Leemann, May 3 2004

• Gun Geometries

- Parameter Studies
 - Solenoid Field
 - Diode Gap
 - Bunch Charge
 - Bunch Length
 - Active Emitter Area
- Scaling Laws and Extrapolation
- Projected Emittance and Slice Emittance

Varying the Bunch Charge

• Gun Geometries

- Parameter Studies
 - Solenoid Field
 - Diode Gap
 - Bunch Charge
 - Bunch Length
 - Active Emitter Area
- Scaling Laws and Extrapolation
- Projected Emittance and Slice Emittance

Varying the Bunch Length

• Gun Geometries

- Parameter Studies
 - Solenoid Field
 - Diode Gap
 - Bunch Charge
 - Bunch Length
 - Active Emitter Area
- Scaling Laws and Extrapolation
- Projected Emittance and Slice Emittance

Varying the Active Emitter Radius

- Gun Geometries
- Parameter Studies
 - Solenoid Field
 - Diode Gap
 - Bunch Charge
 - Bunch Length
 - Active Emitter Area
- Scaling Laws and Extrapolation
- Projected Emittance and Slice Emittance

Scaling Parameters - Extrapolating Results

The bare (but ugly) truth:

- The simulated bunch length ($\pm 3\sigma_z$, $\sigma_z = 20$ ps) is much lower than what we expect at the test stand
- However, it is necessary in order to observe the dynamics of the full bunch (MAFIA dumps phase space data at certain times, not at a certain location)

A possible solution:

>> Can we simulate long bunches by inserting less charge into short bunches?

Bunch Lengthening vs. Reducing the Charge

- Gun Geometries
- Parameter Studies
 - Solenoid Field
 - Diode Gap
 - Bunch Charge
 - Bunch Length
 - Active Emitter Area
- Scaling Laws and Extrapolation
- Projected Emittance and Slice Emittance

What is Slice Emittance?

Transverse Normalized RMS Emittance

• Projected Emittance (property of one entire bunch)

$$\varepsilon = \sqrt{\langle r^2 \rangle \langle p_r^2 \rangle - \langle rp_r \rangle^2} \simeq \gamma \beta \sqrt{\langle r^2 \rangle \langle r'^2 \rangle - \langle rr' \rangle^2}$$

• Slice Emittance (depends on the location t_0 of the slice within the bunch and the width σ_t of the slice)

$$\varepsilon_{t_0} = \gamma \beta \sqrt{\langle r_{t_0}^2 \rangle \langle r'_{t_0}^2 \rangle - \langle r_{t_0} r'_{t_0} \rangle^2}$$

How do we calculate Slice Emittance?

Slice Emittance Example

- Gun Geometries
- Parameter Studies
 - Solenoid Field
 - Diode Gap
 - Bunch Charge
 - Bunch Length
 - Active Emitter Area
- Scaling Laws and Extrapolation
- Projected Emittance and Slice Emittance

Conclusions (I)

Gun Design:

- We're able to maintain a peak electric field strength < 20 MV/m
- By choosing a proper cathode electrode tilt angle we've managed to reduce the norm. transv. emittance to 6.10-8 m·rad
- By closing the gap between the electrodes the emittance can be further minimized to levels well below 10⁻⁸ m·rad
 - >> How far will material and vacuum conditions allow us to go?

Solenoid:

- Using a properly tuned solenoid the emittance can be minimized at a certain location of interest
- Currently the minimum achieved norm. transv. emittance at the exit of the structure (z = 34 cm) is $2.4 \cdot 10^{-8}$ m·rad

Conclusions (2)

Bunch Charge:

• The amount of charge inserted into the bunch scales the emittance roughly linear if we have properly tuned solenoid focussing

Bunch Length:

- Without solenoid focussing lengthening the bunch leads to lower emittance
- With solenoid focussing there is a bunch length that minimizes emittance

Active Emitter Area:

- For a given anode iris radius there is an optimum active emitter radius
- For a given FEA the ratio of active emitter radius and anode iris radius can be optimized for minimum emittance

Conclusions (3)

Extrapolating Results:

- In general we can not extrapolate exact results for longer bunches, but we can estimate upper limits for ϵ
- This has to do with the fact that our bunches are neither disk-shaped nor cigar-shaped, but rather between these two limits where the space charge forces depend strongly on the bunch geometry (ratio between bunch length and radial bunch envelope)

Slice Emittance:

- We can calculate slice emittance values for a bunch and compare with the projected emittance, but parameters have to be properly chosen due to the trade-off between numerical noise and possible resolution
- As expected the slice emittance in the center of the bunch is much smaller than the projected emittance of the entire bunch