
Emittance Compensation - State of the Art Techniques

Overview of Methods

• LASER PULSE SHAPING (for photocathodes)

→ ATF @ BNL / UCLA (Zhou, Ben-Zvi, Babzien, Chang, Doyuran,

Malone, Wang, Yakimenko)

→ Sumitomo Heavy Industries Ltd. / Femtosecond Technology

Research Association

• SOLENOIDS

→ TTF @ DESY (Zhang)

→ PITZ @ DESY / TU Darmstadt (Cee, Krassilnikov, Setzer,

Weiland)

• NON-LINEAR ELECTROSTATIC FIELDS

→ Eindhoven University of Technology / Pulsar Physics

(van der Geer, de Loos, Botman, Luiten, van der Wiel)
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Laser Pulse Shaping (1)

• Simulation code: PARMELA

• Laser beam non-uniformity:

=⇒ Non-linear space charge forces

=⇒ Emittance growth

• Investigate spatial and temporal shaping!
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Laser Pulse Shaping (2)

Spatial shaping:

• Cylindrical symmetry: 30% – 40% emittance growth for peak-to-peak

variations (40% – 70%); “hollow beam” leads to 100% increase!

• Non-cylindrical symmetry: Masks (90% – 50% transmission

efficiency) show an increase of emittance between 30% – 100%
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Laser Pulse Shaping (3)

Temporal shaping:

• Compare emittance growth between Gaussian and square pulses

April 9 2003 Simon C. Leemann 4



Emittance Compensation - State of the Art Techniques

Laser Pulse Shaping (4)

• Compare these shapes for different pulse length and different bunch

current (for small pulse length emittance is dominated by

space-charge, for long pulse length it is dominated by RF)

=⇒ Emittance reduced by 44% for square pulse shape (8 – 10 ps)

=⇒ Emittance reduced by 50% for square pulse shape (Qb = 0.6 nC)

=⇒ εRMS
n = 1.2π mm·mrad for 1 nC current and 9 ps FWHM laser pulse
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Solenoids(1)

• Simulation code: MAFIA

• Key Idea: Solenoid confines beam to forming Brillouin flow and

transfers particles’ angular momentum to a focusing force at its exit

=⇒ Focusing Force = Space Charge Repulsion

=⇒ Thereafter further acceleration to γ � 1

• εx =
√

x2 p2
x − xpx

2
→ linear forces don’t alter εRMS

• Busch’s Theorem: rPφ + q
2πψ = const (ψ =

∮

B dσ is the flux)
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Solenoids(2)

• TTF setup:

– B = 0 at the Neumann boundary; necessary for Busch’s Theorem,

otherwise beam would become axial-confined flow (each particle

rotates around local magnetic flux line instead of global precession

around beamline axis)

– Between a and c Brillouin flow (particles rotate around axis)

– Solenoid fringe very weak at c → rotating momentum turns into

focusing momentum
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Solenoids(3)

• TU Darmstadt setup:

– Main solenoid: DC lens → beam focusing and compensation of

emittance caused by space charge effects

– Compensation solenoid: B = 0 at cathode → electrons have no

azimuthal momentum at gun exit
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Solenoids(4)

• MAFIA results:

– z � 1: Strong emittance growth due to nonlinear radial space

charge forces to about ≈ 5 mm·mrad

– z � 1: Emittance determined by RF effects and iris fringe fields

=⇒ Emittance with and without solenoid field similar, but different slope

of phase space ellipse (with solenoid: converges, without solenoid:

beam exits gun in divergent state)
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Non-linear Electrostatic Emittance Compensation (1)

• Simulation code: GPT (General Particle Tracer) and POISSON

• Requirements:

– kA disk-shaped electron bunches

– Accelerate to 2 MeV in a 1 GV/m field (keep non-relativistic part

of trajectory short!)

– No magnetic compression (avoid radiative collective effects)

=⇒ instead photo-emission from metal cathode by 1 fs laser
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Non-linear Electrostatic Emittance Compensation (2)

• Problems:

– Non-linearity of radial space charge is much larger in a flat

disk-shaped bunch than in a cigar-shaped bunch

Radial component of the electric self-field in the median

plane of a short and long bunch with 1 mm diameter

and identical density profiles
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Non-linear Electrostatic Emittance Compensation (3)

• Problems:

– Small iris of the 1 GV/m accelerating diode gives rise to highly

non-linear radial field component

r − pr transverse phase space at z = 0 mm and z = 0.85 mm

from cathode surface
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Non-linear Electrostatic Emittance Compensation (4)

• Solution:

– Detrimental effects due to these field non-linearities must cancel

each other

– Radial third-order component of the electrostatic accelerating

field should minimize transverse RMS emittance

=⇒ Special diode geometry:

Spherical aberration of diode lens: Er = Er,1(z) r + Er,3(z) r
3
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Non-linear Electrostatic Emittance Compensation (5)

• Uniform acceleration: only space charge

• Anode opening is at 2 mm → largest Er,3

• For z ≤ 1 mm and z ≥ 4 mm acc. field is almost

uniform and therefore Er,3 similar

• γβr = pr/mc vs. r is governed by Er,3

=⇒ γβr = γβr,1(z) r + γβr,3(z) r3

• Special diode geometry: γβr,3 = 0 for z ≥ 3.5 mm

• z ≤ 1 mm: roughly uniform field

• 1 ≤ z ≤ 1.5 and 2.5 ≤ z ≤ 3: compensation due to

negative sign of Er,3

• Over-compensation at z ≥ 1.5 mm

• Strong emittance blow-up at z = 2.3 mm because

of large positive Er,3

=⇒ Resulting εRMS
n lower than with uniform acc. field
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Non-linear Electrostatic Emittance Compensation (6)

• Results:

– At the diode exit γβr,3 = 0, i.e. non-linearities have been fully

compensated

=⇒ Minimum RMS emittance achieved!

– From simulation: 100 pC, 73 fs FWHM pulse → 1,2 kA @ 2 MeV

with RMS emittance reduced by 34% to 0.4 π mm·mrad at the

exit of the diode structure
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http://www.simonleemann.ch/work/leg/stateoftheart

April 9 2003 Simon C. Leemann 16


