Measurements and Modeling at the PSI-XFEL
500 kV Low-Emissivity Electron Source

Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

Abstract
Paul Scherrer Institute (PSI) is presently developing a low-emittance electron source for the PSI-XFEL project. The electron gun consists of an adjustable diode configuration subject to pulses of 250 ns (FWHM) with amplitude up to 500 kV from an air-core transformer-based high-voltage pulser. The facility allows high gradient tests with different cathode configurations and emission processes (pulsed field emission and photo emission). In the first stage, the beamline consists of focusing solenoids followed by an emittance monitor. Selected beam characterization measurements from photo cathode operation driven by a 266 nm UV laser system delivering 4 \(\mu \)J energy during 6.5 ps (RMS) are presented and compared to the results of 3D particle tracking simulations.

Experimental Setup
- High-voltage pulser delivering 250 ns pulses of up to 500 kV amplitude to an adjustable diode (stainless steel or other material)
- 266 nm UV laser (Nd:VAN) illuminating the cathode during pulse (~4 \(\mu \)J)
- Diagnostic beamline consisting of 5 solenoids, wall current monitor, Faraday cup, emittance monitor (pepper-pot) and additional YAG screen.
- Pepper-pot: 200 \(\mu \)m thick tungsten disk, 20 \(\mu \)m diameter holes separated by 250 \(\mu \)m. Beamlets are portrayed onto a YAG screen typically 30 mm downstream of the pepperpot.

Simulation: OPAL
- OPAL = Object-oriented parallel accelerator library
 - C++ framework developed at PSI (A. Adelmann), see http://amas.web.psi.ch/tools/OPAL
 - OPAL-T: (one of several flavors of OPAL)
 - Time-dependent parallel particle-in-cell code
 - Space-charge solver based on integrated Green function (similar to IMPACT-T)
 - We track 10\(^6\) macro-particles on 32\(\times\)32\(\times\)64 mesh.
 - Currently run on 4–8 processors.

Issues
- (Too?) Large emittance in simulation.
- Can be traced back to a large but faint halo (in the simulated beam) – not observed in measurement.
- Strategies (under study):
 - Only consider central 90% of particles in simulation (left)
 - Modify initial distribution on cathode (tails are not very well known)
 - Aperture from anode iris?

Pepper-pot analysis
Principle:
- Space-charge dominated beam
- Emittance monitor: pepper-pot
- Beamlet centroids:
 - Correlated beam divergence
- Beamlet widths:
 - Uncorrelated beam divergence
 - \(\Rightarrow \) emittance
- Beamlet profiles:
 - Complete reconstruction of x-x' phase space

Reality:
- Pepper-pot images
- Envelope scan (YAG screen in emittance monitor)
- Pulse shape
 - 250 ns FWHM pulse (first peak)
- Synchronisation with laser
- Issues
 - Only consider central 90% of particles in simulation (left)
 - Modify initial distribution on cathode (tails are not very well known)
 - Aperture from anode iris?