

Status Report 100 keV DC Gun Test Stand

May 17, 2006

Simon C. Leemann • LEG Project Meeting • May 17, 2006

What Happened Since the MAC Meeting

- The short (and miserable) life of SRI-1257C
 - Maximum emission no higher than ~300 μA and ~5 ρC
 - Bad pulse shape
 - Lots of discharges from tips to gate \rightarrow can cause HV breakdown
 - Gradual decrease of ohmic resistance between tips and gate (from > 2 M Ω down to ~ 55 k Ω)
 - Bridged \rightarrow no emission \rightarrow R.I.P.
- Inserted new FEA (SRI-1257B)
 - Stable operation possible up to $\sim 2 \text{ mA}$ and $\sim 80 \text{ pC}$
 - Decent pulse shape
 - More emission possible by further increasing gate voltage → however, this causes sporadic discharges from tips to gate → avoid such operation due to risk of HV breakdown

What Can Be Measured at Low Intensity

- No transverse single-shot measurements possible (SNR of P43!)
- No obstructive transverse measurements possible (slits, pepper-pot)
 - \rightarrow Integrate over several shots in order to increase signal level
 - → Minimize noise level (no ambient light sources, narrow shutter time)

40kV, U_g=190V -> 1mA/59pC, 10 shot average

Simon C. Leemann • LEG Project Meeting • May 17, 2006

Emittance Measurement

- Can emittance still be derived without obstructive measurements?
- Yes! Theoretical understanding of solenoid focussing \rightarrow "Solenoid Scan"

Solenoid Scan Measurement Method (1)

 Solenoid is a focussing element and a rotator → if measurement is rotationally symmetric, treat solenoid as pure focussing element in both transverse planes

$$\mathcal{M} = \mathcal{M}_S \ \mathcal{M}_L = \begin{pmatrix} 1 - L \cdot kl & L \\ -kl & 1 \end{pmatrix} \quad \text{where } k = \left(\frac{(\int Bds)/l_{eff}}{2 \ p/e}\right)^2$$

• Use thin lens approximation and calculate transformation of Twiss parameters from transfer matrix

$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix} = \begin{pmatrix} C^2 & -2CS & S^2 \\ -CC' & CS' + C'S & -SS' \\ C'^2 & -2C'S' & S'^2 \end{pmatrix} \begin{pmatrix} \beta_s \\ \alpha_s \\ \gamma_s \end{pmatrix}$$

$$\sigma^2 = \varepsilon\beta = C^2\varepsilon\beta_s - 2SC\varepsilon\alpha_s + S^2\varepsilon\gamma_s$$

Solenoid Scan Measurement Method (2)

• Beam size can be expressed as a function of k

$$\sigma^{2} = \varepsilon \beta = C^{2} \varepsilon \beta_{s} - 2SC \varepsilon \alpha_{s} + S^{2} \varepsilon \gamma_{s}$$

$$\vdots$$

$$= k^{2} \underbrace{\left(L^{2}l^{2} \varepsilon \beta_{s}\right)}_{c_{2}} + k \underbrace{\left(2L^{2}l \varepsilon \alpha_{s} - 2Ll \varepsilon \beta_{s}\right)}_{c_{1}} + \underbrace{\left(\varepsilon \beta_{s} - 2L \varepsilon \alpha_{s} + L^{2} \varepsilon \gamma_{s}\right)}_{c_{0}}$$

- Parabolic fit for $\sigma^2(k) \rightarrow c_i \rightarrow Twiss \ parameters$

$$\varepsilon^{2} = \frac{c_{0}c_{2} - c_{1}^{2}/4}{L^{4}l}$$

$$\beta_{s} = \frac{1}{\varepsilon} \frac{c_{2}}{L^{2}l^{2}}$$

$$\alpha_{s} = \frac{1}{\varepsilon} \left(\frac{c_{1}}{2L^{2}l} + \frac{c_{2}}{L^{3}l^{2}}\right)$$

$$\gamma_{s} = \frac{1}{\varepsilon} \left(\frac{c_{0}}{L^{2}} + \frac{c_{1}}{L^{3}l} + \frac{c_{2}}{L^{4}l^{2}}\right)$$

Solenoid Scan Measurement Method (3)

Derive source properties by backtracking from solenoid through drift space

$$\beta = \frac{1}{\gamma} = \frac{1}{\gamma_s}$$
$$\sigma = \sqrt{\varepsilon\beta} = \sqrt{\frac{\varepsilon}{\gamma_s}}$$
$$\Delta s = \frac{-\alpha_s}{\gamma_s}$$

• Implemented application SOLSCAN that takes raw measurement data, transforms I_{sol} to k values, plots measurement data, fits the parabola, calculates the optical parameters and outputs them together with the phase space ellipse

Example Solenoid Scan Measurement (1)

Example Solenoid Scan Measurement (2)

Simon C. Leemann • LEG Project Meeting • May 17, 2006

Example Solenoid Scan Measurement (3)

Simon C. Leemann • LEG Project Meeting • May 17, 2006

Example Solenoid Scan Measurement (5)

[pc5202 SRI-1257B] [bash SLSBASE=/prod]\$ solscan.sh

Application: Emittance vs. Bunch Charge

Outlook

- Non-linear fit, thick lens evaluation of measurement data
 - \rightarrow Improve emittance measurement
 - → Verify if current results are correct (thin lens approximation!)
- Obstructive measurements (slits, pepper-pot) with max. beam intensity (or with a different FEA type which emits a decent amount of charge!)
 - → Improve emittance measurement
 - → Reconstruction of phase space density, not just Twiss parameters
 - \rightarrow Single-shot measurement
 - → Measure emittance at any solenoid setting
- Compare/benchmark these different measurement techniques
- Try to calibrate MAFIA model to experimental data