Status Report

100 keV DC Gun Test Stand

May 17, 2006
What Happened Since the MAC Meeting

- The short (and miserable) life of SRI-1257C
 - Maximum emission no higher than $\sim 300 \, \mu A$ and $\sim 5 \, pC$
 - Bad pulse shape
 - Lots of discharges from tips to gate \rightarrow can cause HV breakdown
 - Gradual decrease of ohmic resistance between tips and gate
 (from $> 2 \, M\Omega$ down to $\sim 55 \, k\Omega$)
 - Bridged \rightarrow no emission \rightarrow R.I.P.

- Inserted new FEA (SRI-1257B)
 - Stable operation possible up to $\sim 2 \, mA$ and $\sim 80 \, pC$
 - Decent pulse shape
 - More emission possible by further increasing gate voltage \rightarrow however, this causes sporadic discharges from tips to gate \rightarrow avoid such operation due to risk of HV breakdown
What Can Be Measured at Low Intensity

- No transverse single-shot measurements possible (SNR of P43!)
- No obstructive transverse measurements possible (slits, pepper-pot)
 → Integrate over several shots in order to increase signal level
 → Minimize noise level (no ambient light sources, narrow shutter time)

![Graph showing Sigma_x vs z for different intensity levels](image-url)

- 40kV, $U_g=190V \rightarrow 1mA/59pC$, 10 shot average
- $I_{sol} = 49.3mT$
- $I_{sol} = 43.3mT$
- $I_{sol} = 37.3mT$
- $I_{sol} = 31.3mT$
Emittance Measurement

- Can emittance still be derived without obstructive measurements?
- Yes! Theoretical understanding of solenoid focussing \rightarrow “Solenoid Scan”

$$\sigma_{x,y}^{(i)} = f(l_{\text{sol}}^{(i)}, \epsilon, \alpha_s, \beta_s)$$
Solenoid Scan Measurement Method (1)

- Solenoid is a focusing element and a rotator \(\rightarrow \) if measurement is rotationally symmetric, treat solenoid as pure focusing element in both transverse planes.

\[
\mathbf{M} = \mathbf{M}_S \mathbf{M}_L = \begin{pmatrix} 1 - L \cdot kl & L \\ -kl & 1 \end{pmatrix}
\]

where \(k = \left(\frac{\int B ds}{2 p/e} \right)^2 \)

- Use thin lens approximation and calculate transformation of Twiss parameters from transfer matrix.

\[
\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix} = \begin{pmatrix} C^2 & -2CS & S^2 \\ -CC' & CS' + C'S & -SS' \\ C'^2 & -2C'S' & S'^2 \end{pmatrix} \begin{pmatrix} \beta_s \\ \alpha_s \\ \gamma_s \end{pmatrix}
\]

\[
\sigma^2 = \varepsilon \beta = C^2 \varepsilon \beta_s - 2SC \varepsilon \alpha_s + S^2 \varepsilon \gamma_s
\]
Solenoid Scan Measurement Method (2)

- Beam size can be expressed as a function of k

$$
\sigma^2 = \varepsilon \beta = C^2 \varepsilon \beta_s - 2SC \varepsilon \alpha_s + S^2 \varepsilon \gamma_s
$$

$$
= k^2 \left(L^2 l^2 \varepsilon \beta_s \right) + k \left(2L^2 \varepsilon \alpha_s - 2Ll \varepsilon \beta_s \right) + \left(\varepsilon \beta_s - 2L \varepsilon \alpha_s + L^2 \varepsilon \gamma_s \right)
$$

- Parabolic fit for $\sigma^2(k) \rightarrow c_i \rightarrow$ Twiss parameters

$$
\varepsilon^2 = \frac{c_0c_2 - c_1^2/4}{L^4l}
$$

$$
\beta_s = \frac{1}{\varepsilon} \frac{c_2}{L^2l^2}
$$

$$
\alpha_s = \frac{1}{\varepsilon} \left(\frac{c_1}{2L^2l} + \frac{c_2}{L^3l^2} \right)
$$

$$
\gamma_s = \frac{1}{\varepsilon} \left(\frac{c_0}{L^2} + \frac{c_1}{L^3l} + \frac{c_2}{L^4l^2} \right)
$$
Solenoid Scan Measurement Method (3)

- Derive source properties by backtracking from solenoid through drift space

\[
\beta = \frac{1}{\gamma} = \frac{1}{\gamma_s}
\]

\[
\sigma = \sqrt{\varepsilon \beta} = \sqrt{\frac{\varepsilon}{\gamma_s}}
\]

\[
\Delta s = \frac{-\alpha_s}{\gamma_s}
\]

- Implemented application **SOLSCAN** that takes raw measurement data, transforms \(l_{\text{sol}} \) to \(k \) values, plots measurement data, fits the parabola, calculates the optical parameters and outputs them together with the phase space ellipse
Example Solenoid Scan Measurement (1)
Example Solenoid Scan Measurement (2)

40kV, z=293mm, U_g=184V -> 661µA, 39.6pC, 10 shot average
Example Solenoid Scan Measurement (3)

40kV, z=293mm, U_g=184V -> 661uA, 39.6pC, 10 shot average

\[(\sigma_x)^2 \ [m^2] \]

\[k \ [1/m^2] \]

Fit \(f(x) = c_2 x^2 + c_1 x + c_0 \)
Example Solenoid Scan Measurement (5)

\[\epsilon_n = (4.01 \pm 0.12) \cdot 10^{-7} \, \text{m} \cdot \text{rad} \]
\[\beta = (0.216 \pm 0.013) \, \text{m} \]
\[\alpha = (-5.669 \pm 0.277) \, \text{rad} \]

source: \[\sigma = (8.05 \pm 0.22) \cdot 10^{-5} \, \text{m} \]
Application: Emittance vs. Bunch Charge

40kV, z=344mm, 10 shot average

Normalized Transverse Emittance [m*rad]

Bunch Charge [pC]
Outlook

• Non-linear fit, thick lens evaluation of measurement data
 → Improve emittance measurement
 → Verify if current results are correct (thin lens approximation!)

• Obstructive measurements (slits, pepper-pot) with max. beam intensity
 (or with a different FEA type which emits a decent amount of charge!)
 → Improve emittance measurement
 → Reconstruction of phase space density, not just Twiss parameters
 → Single-shot measurement
 → Measure emittance at any solenoid setting

• Compare/benchmark these different measurement techniques

• Try to calibrate MAFIA model to experimental data