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When charged particles are accelerated or decelerated they emit electro-
magnetic radiation:

What is Synchrotron Radiation? 

4

GE Research Lab, Schenectady NY USA, 
1947 (70 MeV)

Wilhelm Conrad Röntgen, 1895

1 of 6: Synchrotron Radiation

In a cathode ray tube electrons are accelerated and 
then stopped → “bremsstrahlung” (a part of the 
emitted spectrum are X-rays)

In a synchrotron relativistic electrons are deflected 
by bending magnets and emit radiation due to the 

radial acceleration → “synchrotron radiation”
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• Synchrotron radiation covers the entire spectrum
from infrared to hard X-rays

• Synchrotron radiation can penetrate matter

• Wavelengths comparable to molecular and atomic
dimensions → investigate molecular structures

• Synchrotron radiation is emitted into a narrow cone

• Synchrotron radiation is emitted in short pulses → time-resolved imaging
➡ Synchrotron radiation has become an indispensable tool in science, medicine, 

and engineering

Why Synchrotron Radiation? 

5

 
 

SR

Courtesy of wikipedia.org

1 of 6: Synchrotron Radiation
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Synchrotron Radiation Source Generations

6

1st generation sources (up to ~1970)

• Parasitic use of electron storage rings originally built for particle physics 
experiments (CESR in Ithaca NY, USA or DORIS @ DESY in Hamburg, 
Germany)

Courtesy of CESR

Courtesy of journals.iucr.org

1 of 6: Synchrotron Radiation
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Synchrotron Radiation Source Generations

7

2nd generation sources (late 1970s)

• First electron synchrotrons built as dedicated synchrotron radiation 
facilities (NSLS in Brookhaven NY, USA or SRS in Daresbury, UK)

Courtesy of CCLRC

1 of 6: Synchrotron Radiation
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Synchrotron Radiation Source Generations

8

3rd generation sources (late 1980s)

• Dedicated electron storage rings with undulators and wigglers → hard & 
intense radiation (ALS in Berkeley CA, USA or SPring-8 in Hyogo, Japan)
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electron beam

to experiment

S. Werin: “Tutorial on FEL”, CERN Accelerator School, Brunnen, 2003

Courtesy of University of Leicester

1 of 6: Synchrotron Radiation
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The Swiss Light Source SLS at PSI

9

• SLS is a 2.4 GeV electron storage ring based 3rd 
generation light source

• In operation since 2001, high availability

• Delivers light to over a dozen beam lines 
simultaneously

• Undulator, wiggler and bending magnet radiation

• Photon energy: 1 meV - 45 keV (1 mm - 0.03 nm)

• Pulse length > 10 ps

1 of 6: Synchrotron Radiation
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Today’s Synchrotron Radiation User Requests

11

• Beyond what a 3rd generation source can deliver:

• Even higher peak brightness
(more photons, smaller beam size, narrower bandwidth)

• High intensity hard X-ray radiation
λ = 1Å (~ size of an atom!)

• Ultra-short pulses
τ ~ 50 fs

• Fully coherent radiation
(laser-like radiation from a point source)

➡ Need a new type of synchrotron radiation source to fulfill these demands, the 
so called “4th generation source”

➡ Free Electron Laser (FEL) is such a concept

2 of 6: X-Ray Free Electron Lasers
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What is a Free Electron Laser?

12

• Classical laser system:

• Free Electron Laser:
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What is an X-FEL?

13

• X-Ray Free Electron Laser (X-FEL) is an FEL tuned to emit X-ray radiation
➡ Need high electron beam energy (on the order of GeV)

• However, no efficient mirrors exist for X-rays

➡ Single-pass X-FEL required

λ =
λu

2γ2

(
1 +

K2

2

) {
λu : Undulator Period
K ∝ Bu : Undulator Parameter

!"#$%&'$()*+,

! "#$%&'%($!)$

! *+$! '(($,)

! -.,/0123$)/4,25$6$
2& 2,2748

! 9:77;7<$1:):5

! -'$(&.")(/%.3$=:4=$
72>?$#/52@$A<5/012A$

! ,/%&03$=:4=$>2/B$
>;C27@$A.,<5/012A

Laser Radiation

MirrorMirror

Electron Beam

(Laser Medium)

Undulator

2 of 6: X-Ray Free Electron Lasers



Simon C. Leemann • Public Thesis Defense • January 25, 2007 of 47

For example: SASE X-FEL (self amplified stimulated emission)

• Requires: long undulator, high peak current, overlap between electron beam 
and photon beam

• Bunch emits incoherent radiation in the undulator

• Radiation acts back on the bunch → energy modulation in the bunch → 
density modulation of the bunch → “microbunching”

• Microbunches emit coherent radiation
➡ Intense hard X-ray radiation with laser-like properties

Single-pass X-FEL Systems

14

2 of 6: X-Ray Free Electron Lasers

incoherent radiation coherent radiation
microbunching
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S. Werin: “Tutorial on FEL”, CERN Accelerator School, Brunnen, 2003
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Compressor

What Kind of Accelerator is Required for an X-FEL?

15

• Electron gun
➡ delivers short and intense electron bunches

• Linac (linear accelerator)
➡ accelerates short electron bunches to high energy

• Bunch compressor
➡ increases peak current

2 of 6: X-Ray Free Electron Lasers
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Linac Coherent Light Source (LCLS)
SLAC, Stanford CA, USA

• >3 km long, 14 GeV, ~300 million USD
• Construction started 2006
• Operational by 2009

European X-FEL
DESY, Hamburg, Germany

• 3.4 km long, 20 GeV, ~1 billion EUR
• Construction starts 2007
• Operational by 2013

Two 1Å X-FEL Projects

16

Courtesy of SLAC

Courtesy of DESY

2 of 6: X-Ray Free Electron Lasers
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PSI is interested in an X-FEL as a companion synchrotron radiation source to the 
existing SLS:

SLS
• Large available radiation wavelength range
• Many beamlines simultaneously in operation

PSI X-FEL
• High peak brightness → single-shot imaging
• Ultra-short pulses → time-resolved imaging

➡ However, existing 1Å X-FEL concepts are too
large to fit on the PSI site and too expensive
for the Swiss synchrotron radiation community

A 1Å X-FEL for Switzerland

17

×109

2 of 6: X-Ray Free Electron Lasers
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• Yes! With a high quality electron beam, the required electron beam energy is 
reduced
➡ A shorter linac is sufficient
➡ X-FEL becomes smaller and less expensive

• High quality electron beam = electron beam with ultra-low emittance

➡ New challenge: generating ultra-low emittance electron beams

Is There an Alternative 1Å X-FEL Concept?

18

ε(n)

βγ
<

λ

4π

European X-FEL PSI X-FEL

Beam Energy 20 GeV 6 GeV

Total Length 3400 m 800 m

Cost 1.6 billion CHF ~ 300 million CHF

Required Emittance 0.9 mm mrad 0.05 mm mrad

18 times lower!

2 of 6: X-Ray Free Electron Lasers
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• Simple picture: emittance is a measure of beam quality

• Definition: measure of particle distribution density in phase space

• Liouville’s theorem: in Hamiltonian systems, normalized emittance is a 
conserved quantity → need low emittance source

What is Emittance?

20

3 of 6: Generating Low Emittance Beams

ε ! d · φ

d

φ

σu

u

N

N

Area = π · εu

pu

σpu

ε(n)
u =

1
mec

√
〈u2〉 〈p2

u〉 − 〈upu〉2

! γβ
√
〈u2〉 〈u′2〉 − 〈uu′〉2

Measure directly Cannot measure
directly → need “trick”
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Thermionic emission: the oldest and most well known 
electron source

• Cathode material is heated to >1000 K upon which 
electrons have sufficient energy to escape material and 
enter vacuum

• In order to get high peak current, need higher 
temperature and/or larger cathode size → blows up 
source emittance

• Emission is DC → need gating grid or chopper 
(emittance deterioration)

➡ Prefer smaller, pulsed, cold cathodes

Survey of Electron Sources

21

CeB6 Cathode & Heater Assembly

• CeB6 Cathode 3 mm Diameter

• Emittance 0.4 !.mm.mrad

(thermal emittance, theoretical )

• Beam Current 3 Amp. 

at 1450 deg.C

(using graphite heater)

• Current Density  > 40 A/cm2

T. Shintake: “Small Emittance Sources/Guns”, 
CERN Accelerator School, Brunnen, 2003

CeB6 Cathode & Heater Assembly

• CeB6 Cathode 3 mm Diameter

• Emittance 0.4 !.mm.mrad

(thermal emittance, theoretical )

• Beam Current 3 Amp. 

at 1450 deg.C

(using graphite heater)

• Current Density  > 40 A/cm2
CeB6 thermionic cathode

ε(n) =
γ rc

2

√
kBT

mec2

3 of 6: Generating Low Emittance Beams
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Photo-electric emission: cold, short-pulsed emission

• Cathode material is irradiated with short laser 
pulses upon which electrons are released to 
vacuum through the photo-electric effect

• Short-pulse laser systems are available → allow 
precise control of longitudinal (time structure) 
and transverse bunch shape

• High peak current through use of short 
wavelength lasers → photon energy Eγ = hc/λ is 
much larger than work function Φw → large 
momentum spread → large source emittance

• Use longer wavelength laser where Eγ = hc/λ ~ Φw 

→ reduced current → larger cathode area 
required → increased source emittance 

➡ Need an alternative electron emission process!

Survey of Electron Sources

22

e-
γ

Cs2Te photo-cathode @ PITZ

3 of 6: Generating Low Emittance Beams
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• Bring cathode material into high electric field region

• High external electric fields reduce potential barrier
(Schottky effect)
➡ The effective work function Φw,e is reduced
➡ The potential barrier thickness is reduced

• Quantum mechanics: there is a finite probability for
electrons to tunnel through the potential barrier into
vacuum → Fowler-Nordheim law:

• Since the electrons tunnel through the potential barrier → kinetic energy is 
lower than the effective work function Ee < Φw,e

• Providing there is a very high effective electric field (several GV/m) large 
amounts of current can be drawn from very small areas

➡ Small emission area and low transverse momenta → low source emittance!

Field Emission

23

JFN ≈ 1.54 · 10−6 β2E2

φw
exp

(
−6.83 · 109 φ3/2

w

βE

)

φw
∆φsch

e−
Ef

3 of 6: Generating Low Emittance Beams
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High current density requires large effective electric field strength
➡ geometric field enhancement and high external voltage

• Needle-tip emitters → total current insufficient

• Field emitter arrays (FEAs) → many nano-tips distributed over cathode surface

Field Emission Cathodes

24

3 of 6: Generating Low Emittance Beams
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• FEAs with gate layer → pulsed emission

• FEAs with focusing layer → reduce divergence → minimize source emittance

Field Emission Cathodes

25

2 µm
1 µm −

+

FIG. 8. IFE FE cone with dimensions.

FIG. 9. Close-up picture of a sharp tip.

FIG. 10. FN plot of IV data from a single tip.

FIG. 11. Plots of anode current vs gate voltage for arrays of different sizes.

FIG. 12. FN plot for a 25!750 array.

FIG. 13. Gate, focus, and three-terminal !labeled ‘‘Total’’" transfer charac-
teristics.

58 L. Dvorson and A. I. Akinwande: Double-gated Spindt emitters with stacked focusing 58

J. Vac. Sci. Technol. B, Vol. 20, No. 1, JanÕFeb 2002

−
+
−

3 of 6: Generating Low Emittance Beams
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• Gain experience with FEA as cathode in an electron gun

• What are the properties of a bunch emitted by an FEA and accelerated in a 
HV gap?

• Can the FEA deliver sufficient peak current?

• Do the electron bunches have a low emittance?

• What diagnostic equipment and which diagnostic techniques are required to 
measure ultra-low emittance?

Motivation Behind the 100 keV DC Gun Test Stand

27

4 of 6: 100 keV DC Gun Test Stand
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3D Plot: Gun Test Stand

The 100 keV DC Gun Test Stand consists of:

• Electron gun with FEA cathode 
(exchangeable)

• In-vacuum solenoid magnet → beam 
focusing, emittance compensation

• Diagnostics module → benchmark FEA 
performance and investigate beam 
quality

• Digital control system → experimental 
control and data acquisition

• Dedicated vacuum system and 
diagnostics → ensure UHV conditions

• Local access control and safety system 
→ radiation protection and HV safety

Overview of the 100 keV DC Gun Test Stand

28

4 of 6: 100 keV DC Gun Test Stand
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Test Stand Bunker and Control System

29

4 of 6: 100 keV DC Gun Test Stand
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Test Stand Gun, Pulser and Diagnostics Module

30

4 of 6: 100 keV DC Gun Test Stand
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• Used gated FEAs from SRI 
International (no focusing layer)

• Cathode and anode electrodes 
(removable) define gun geometry

• Design optimization and particle 
tracking done with codes MAFIA 
(2.5D) and GPT (3D)

• Cathode is put on -100 kV DC bias, 
anode is grounded

• FEA pulser is on cathode potential 
and applies square pulses to gate layer 
(0 - 320 V, 5 - 100 ns)

• In-vacuum solenoid with water 
cooling circuit and high-μ yoke 
(confines magnetic field, reduces field 
leak onto cathode) delivers Bz up to 
200 mT on axis

Gun & Solenoid

31

Spot Weld

Glass 

Insulation

TO-5 

Header

Gate Contact

Gate Film

Silicon Chip

4 of 6: 100 keV DC Gun Test Stand
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• In order to measure the charge-time 
structure of the bunch, a Faraday cup can be 
driven into the beam and read out with a 
fast oscilloscope (2 GHz, 20 GS/s)

• Measure the voltage over a known resistor 
→ momentary bunch current

• Integration of current signal over pulse 
length → total bunch charge

Diagnostics: Measuring Charge-Time Structure

32
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Two screen monitor systems with dedicated zoom optics and CCD camera

• YAG: crystal at 45° angle driven into beam laterally → measure beam size/
profile at location of minimum emittance

• P43 phosphor: Coating on vacuum window at the end of the diagnostics 
module (movable) → measure beam size/profile and beam image at various 
positions along beam path

Diagnostics: Measuring Beam Size & Imaging the Bunches

33

σx =  (0.872 ± 0.006) mm
σy =  (0.944 ± 0.010) mm

4 of 6: 100 keV DC Gun Test Stand
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• Various measurements → compare methods, benchmark accuracy

• Measure transverse bunch properties: Insert obstruction, image emerging 
beamlet(s) downstream → calculate bunch properties at location of 
obstruction

• Inserts have to fully stop beam outside hole/slit → 100 μm tungsten masks

Diagnostics: Measuring the Transverse Bunch Emittance

34
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• Single slit mask (20 μm): together with beam size at location of the slit this 
gives emittance

• Slit array mask (20 μm, 170 μm pitch): measure divergence within different 
beamlets and beam envelope → emittance, phase space ellipse

• Pinhole array mask (50 μm, 320 μm pitch): corresponds to using a horizontal 
and vertical slit array in one single shot

• Mask dimensions optimized according to simulation results (MAFIA)

Diagnostics: Measuring the Transverse Bunch Emittance

35
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FEA Performance

37

5 of 6: Experimental Results

• Gun sustains stable DC HV of 100 kV

• Lifetime issue: FEAs are extremely sensitive to HV 
breakdown (after HV arc FEA is usually destroyed due 
to bridge between tips and gate layer)

• SRI FEAs operated at 40 kV

➡ At higher accelerating voltage more severe damage 
to FEA (ion back-bombardment, HV arcs)

• SRI FEAs gate voltage limited to < 200 V

➡ At high gate voltages instabilities in emission are 
observed (tip to gate emission → local vacuum 
degradation → can induce HV breakdown)

➡ Maximum emission from SRI FEAs:
Î = 2 mA, Q = 100 pC (in 100 ns)

100 µm
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Transverse Beam Images and Profile Measurements

38

• Hot spots and non-uniformities 
discovered in the transverse beam image 
(HV breakdown causes damage to 
emitting surface, cathode contamination)

• At 40 kV and with low bunch current 
needed to average over several images to 
get sufficient SNR

Focused beam

σx =  (0.872 ± 0.006) mm

Defocused beam

σx =  (2.87 ± 0.03) mm

5 of 6: Experimental Results
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• Measure downstream beam size (P43) as a function of solenoid current

Solenoid Scan (Emittance Measurement)

39
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• Model solenoid lens and express beam size as a function of solenoid current

• Fit for σ as a function of
Isol returns emittance and
Courant-Snyder parameters
at the location of the solenoid

• Codes SOLSCAN & EML
developed to perform fitting
and return results with errors

Solenoid Scan (Emittance Measurement)

40

σ =
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1 + α2
s

βs
M2

12

)

M = MdMsol =

(
cos φ− L

√
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√
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Alternative Emittance Measurement: Single Slit Method

41

• Measure beam size at location of the
single slit insert (YAG)

• Measure beamlet width σu downstream
of a horizontal or vertical slit (P43)

• If linear correlation between divergence
and location is removed, emittance
becomes a simple product of beam size
and uncorrelated divergence

➡  Good agreement with solenoid scan results

u′ !−→ ũ′ = u′ −m u

εu =
√
〈u2〉 〈u′2〉 − 〈uu′〉2 $−→

√
〈u2〉 〈ũ′2〉

〈u2〉

〈ũ′2〉 =
σ2

u

L2

εx = (2.41± 0.19)mm mrad

5 of 6: Experimental Results
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Pinhole Array Measurements

42

• Measure beamlet images downstream 
of a pinhole array (P43)

• Calculate histogram of beamlet images 
and subtract background

• Divergence centroid for each bunch 
slice given by shift of beamlet image 
with respect to pinhole

• Divergence spread of each bunch slice
given by width of beamlet image

(di − d0)/L −→ x′
i

wi/L −→ σ′
i

wi

d0
di

L

5 of 6: Experimental Results
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Pinhole Array Measurements

43
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• Divergence centroid and spread
for each slice gives phase space
distribution

• Using weighted averages, calculate
second order moments → ε, β, α

• Code RECONSTRUCTION devel-
oped to do entire post-processing
and return results with errors
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βx = (0.592± 0.027) m

αx = (−1.17± 0.061)
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Transverse Phase Space Reconstruction

44

• Relative intensity of beamlet images → reconstruct phase space density

• Developed code PHSPDENS to map each pixel on CCD to an area in phase 
space and calculate distribution density

εx = (2.846± 0.262)mm mrad

5 of 6: Experimental Results
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Conclusions & Outlook
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6 of 6: Conclusions & Outlook

• Test stand has been successfully commissioned and is fully operational

• Different measurement techniques deliver compatible results

• FEA cathodes can be benchmarked in terms of performance and transverse 
beam properties

• SRI FEAs do not deliver sufficient amounts of current

• Experimental evidence for increased source divergence (and hence 
increased source emittance) due to lack of focusing layer

➡ PSI has started in-house development of new FEAs optimized for use in an 
electron gun

• Focusing layer → reduce source emittance

• Metallic substrate → reduce bulk resistance → increase emission

• Test stand will be used to benchmark PSI FEAs → optimize FEA design
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Thank You
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