

Characterization of Electron Bunches from Field Emitter Array Cathodes for Use in Next-Generation X-Ray Free Electron Lasers

Contents

- Introduction
 - The PSI X-FEL
 - The LEG Project at PSI
- Theory
 - Brightness & Emittance
 - Low Emittance Sources
 - Space Charge Forces
 - Emittance Compensation
- The LEG Project's 100 keV DC Gun Test Stand
 - Motivation Behind the Test Stand
 - Gun & Solenoid
 - Diagnostics
- Experimental Results
 - Performance
 - Beam Profile Measurements
 - Emittance Measurements
- Conclusions & Outlook

Motivation Behind the PSI X-FEL

- PSI operates the Swiss Light Source SLS (3rd generation, storage ring based)
- Synchrotron radiation users have increasing demands
 - Even higher peak brightness (the figure of merit of light sources)
 - Hard X-ray radiation
 - Ultra-short pulses \rightarrow time-resolved imaging of fast processes
 - Fully coherent radiation (spatial and longitudinal coherence)
- ➡ Need a new "4th generation light source" to fulfill these needs

Linac based X-FEL

Layout of the PSI X-FEL

- Single-pass X-FEL consisting of
 - Low emittance electron source
 - Linear accelerator system
 - Bunch compressor system
 - Undulator section (single-pass system: seeding)

Motivation Behind the LEG Project

- Other 1Å X-FEL projects: LCLS, European X-FEL
 - Electron energies up to 20 GeV
 - Several km long machines
- ➡ PSI strategy: downscale facility
 - Lower electron beam emittance \rightarrow less energy required at undulator
 - Lower electron beam energy \rightarrow linac length reduced
 - Decreased energy and length of machine \rightarrow lower cost

Low Emittance Gun (LEG) Project

- Novel type of electron gun with unprecedented emittance ($\epsilon_{x,y} = 0.05 \text{ mm mrad}$)
- High gradient acceleration
- Conserve low emittance up to relativistic energies
- Develop diagnostics capable of measuring ultra-low emittance

Brightness & Emittance

- Single-pass X-FEL requires:
 - High electron flux

 - High peak currentSmall energy spread
 - Small angular spread
- RMS emittance: measure of the volume occupied by a bunch in phase space

Brightness is figure of merit: $\mathcal{B} = \frac{\mathcal{Q}}{\varepsilon_x \varepsilon_y \varepsilon_z}$

$$\varepsilon_u^{(n)} = \frac{1}{m_e c} \sqrt{\langle u^2 \rangle \langle p_u^2 \rangle - \langle u p_u \rangle^2}, \qquad u = x, y$$

- Liouville's theorem: normalized emittance conserved
 - ➡ Low source emittance
 - ➡ High final electron beam energy

$$\frac{\varepsilon_{x,y}^{(n)}}{\beta\gamma} < \frac{\lambda}{4\pi} \qquad \qquad \lambda = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2}\right) \qquad \qquad \lambda_u : \text{Undulator Period} \\ K \propto B_u : \text{Undulator Parameter} \end{cases}$$

Low Emittance Sources

- Thermionic emission
 - Electrons emitted at T > 1000 K
 - Large initial $E_{kin} \rightarrow large$ initial $p_{x,y} \rightarrow large$ source $\epsilon_{x,y}$
 - Prefer cold cathodes
- Photo-electric emission
 - Time structure of electron bunch given by laser pulse
 - For good QE need short laser wavelength λ_Y
 - → $E_Y = hc/\lambda_Y > \Phi_w \rightarrow large$ initial energy spread
- Field emission
 - Tunneling \rightarrow emitted electrons have very low E_{kin}
 - Tips in high electric fields \rightarrow field enhancement
 - Field emitter array (FEA) \rightarrow increases current
 - Gate layer \rightarrow trigger pulsed emission
 - Focusing layer \rightarrow low source $\sigma_{x',y'} \rightarrow$ low source $\epsilon_{x,y}$

CeB₆ thermionic cathode (Shintake et al.)

Cs₂Te photo-cathode @ PITZ

Space Charge Forces

• Space charge forces: direct collective effect where the charge of the entire bunch acts on a single bunch particle

• At high energies electric defocusing (bunch charge) is compensated by magnetic focusing (bunch current)

$$F_r = q \left(E_r - \beta c B_\theta \right) = q \left(1 - \beta^2 \right) E_r = \frac{q E_r}{\gamma^2}$$

- Space charge forces lead to distortions of the bunch's phase space distribution and to coupling between different conjugate coordinates → emittance growth
- \rightarrow High gradient acceleration \rightarrow reduce space charge blow-up at low energies
- Compensate emittance growth due to space charge blow-up

Emittance Compensation

 Bunch has longitudinal charge modulation → defocusing space charge forces are different within different slices of the bunch

- In each slice: superposition of varying defocusing force (space charge) and constant focusing force (lens)
 - ➡ Slices rotate in phase space with different frequencies
 - → At one point along drift slices overlap \rightarrow emittance minimized

Motivation Behind the 100 keV Gun Test Stand

- Investigate bunches emitted from pulsed FEAs
- Demonstrate emittance compensation
- Develop diagnostic procedures to measure ultra-low emittance and reconstruct full transverse phase space
- I00 keV Gun Test Stand designed, assembled and commissioned:
 - DC HV diode, FEA pulser on HV potential
 - Pulsed emission of space charge dominated bunches from FEAs
 - In-vacuum solenoid magnet:
 - Focusing
 - Emittance compensation
 - Diagnostic module:
 - Measure charge-time structure of bunches
 - Measure emittance & Courant-Snyder parameters (several methods → compare results)
 - Reconstruct full transverse phase space distribution

Gun & Solenoid

- FEA (r = 0.5 mm) on TO-5 mount installed in transistor holder, coaxial connection to cathode-side SMA feedthrough
- 100 kV, 11 mm gap, $\hat{I} = 100$ mA, $\tau = 5$ ns
- Extensive parameter studies:
 - ES/MS solver: MAFIA 2.5D
 - cathode and anode electrode size/shape optimized for lowest emittance at gun exit
 - solenoid specifications optimized for emittance compensation (I_{max} = 3 A, B_z = 200 mT on axis)
 - Particle tracking: GPT 3D
 - ➡ alignment tolerances

Diagnostics: Slit & Pinhole Inserts

- Emittance measurement: requires single slit beamlet image and beam size at slit location
- Courant-Snyder parameter measurement: requires image of beamlets from slit array (two shots) or pinhole array (single shot)
- Phase space distribution: use relative beamlet intensity information to reconstruct phase space density
- Longitudinal beam sampling: Pepper-pot (pinhole array attached to movable screen monitor)

Diagnostics: Faraday Cup & Screen Monitors

- Vertical and horizontal inserts for obstructive measurements:
 - Each insert carries three tungsten masks (100 μm): single slit, slit array and pinhole array
- Screen monitors systems (with CCD cameras & zoom optics):
 - YAG: insert at fixed longitudinal position \rightarrow beam size/profile measurement
 - P43 phosphor: ultimate beam stop, can be moved to desired longitudinal position → beam size/profile measurement, image beamlets
- Coaxial Faraday cup & fast oscillocope (2 GHz, 20 GS/s)
 - Measure charge-time structure of 5-100 ns bunches

Performance: Operation Boundaries

- Gun sustains stable DC HV of 100 kV
- Slight misalignment of cathode with respect to anode increases surface peak electric field (> 20 MV/m on anode iris) → reduce DC HV
- Lifetime issue: FEAs are extremely sensitive to HV breakdown (after HV arc FEA is usually destroyed due to bridge between tips and gate layer)
- SRI FEAs operated at 40 kV
 - At higher accelerating voltage more severe damage to FEA (ion back-bombardment, HV arcs)
- SRI FEAs gate voltage limited to < 200 V
 - At high gate voltages instabilities in emission are observed (tip to gate emission → local vacuum degradation → can induce HV breakdown)

Performance: Peak Current & Bunch Charge

- Maximum performance given by stable emission of FEA and not by space charge limit of cathode
- Î = 2 mA, Q = 100 pC (in 100 ns)
- Emittance dominated beam

- Exponential increase of field emitted current with gate voltage as predicted by Fowler-Nordheim law
- Emission current very sensitive to gate voltage

Beam Profile Measurements

Focused beam

- Beam size independent of bunch charge (emittance dominated beam)
- Emittance compensation cannot be investigated with this FEA type
- Beam size evolution in agreement with theoretical model

- At 40 kV and with low bunch current needed to average over several images to get sufficient SNR
- Hot spots and non-uniformities discovered in the transverse beam image

Emittance Measurements: Solenoid Scan

- Measure downstream beam size (P43) as a function of solenoid current
- Model solenoid as thin/thick lens with hard/smooth (as calibrated) edges

$$\mathcal{M} = \mathcal{M}_{\rm d} \, \mathcal{M}_{\rm sol} = \begin{pmatrix} \cos \phi - L\sqrt{k} \sin \phi & \frac{1}{\sqrt{k}} \sin \phi + L \cos \phi \\ -\sqrt{k} \sin \phi & \cos \phi \end{pmatrix} \qquad \text{where} \begin{array}{c} \phi &=& \sqrt{k} \cdot l \\ k &=& (\frac{B_{\rm sol}}{2p/e})^2 \end{pmatrix}$$

• Fit for σ as a function of I_{sol} returns ε , β , α at the location of the solenoid

$$\sigma = \sqrt{\varepsilon \left(\beta_s^2 \mathcal{M}_{11}^2 - 2\alpha_s \mathcal{M}_{11} \mathcal{M}_{12} + \frac{1 + \alpha_s^2}{\beta_s} \mathcal{M}_{12}^2\right)}$$

• Wrote codes SOLSCAN & EML to perform fitting and return results with errors

Simon C. Leemann • Thesis Defense • December 18, 2006

Emittance Measurements: Single Slit Measurement

- Measure beam size at location of the single slit insert (YAG) $\langle u^2 \rangle$
- Measure beamlet width σ_u downstream of a horizontal or vertical slit (P43)

$$\langle \tilde{u}'^2 \rangle = \frac{\sigma_u^2}{L^2}$$

 If linear correlation between divergence and location is removed, emittance becomes a simple product of beam size and uncorrelated divergence

$$u' \longmapsto \tilde{u}' = u' - m u$$

$$\varepsilon_u = \sqrt{\langle u^2 \rangle \langle u'^2 \rangle - \langle uu' \rangle^2} \quad \longmapsto \quad \sqrt{\langle u^2 \rangle \langle \tilde{u}'^2 \rangle}$$

Emittance Measurements: Pinhole Array Measurement (1)

- Measure beamlet images downstream of a pinhole array (P43)
- Calculate histogram of beamlet images and subtract background
- Divergence centroid for each bunch slice given by shift of beamlet image with respect to pinhole
- Divergence spread of each bunch slice given by width of beamlet image

Emittance Measurements: Pinhole Array Measurement (2)

• Divergence centroid and spread for each slice gives phase space distribution

$$\bar{u}'_m = \frac{\langle u_m - m \, w \rangle}{L} \qquad m \in \mathbb{N}_0$$
$$\sigma'_m = \sqrt{\langle (u_m - m \, w)^2 \rangle / L^2 - (\bar{u}'_m)^2}$$

- Using weighted averages, calculate second order moments $\rightarrow \epsilon, \beta, \alpha$ $\langle u^2 \rangle = \frac{\sum_{m=1}^N I_m \bar{u}_m^2}{\sum_{m=1}^N I_m}$
- Wrote code *RECONSTRUCTION* to do entire post-processing and return results with errors

$$\varepsilon_x = (2.846 \pm 0.262) \,\mathrm{mm} \,\mathrm{mrad}$$

$$\beta_x = (0.592 \pm 0.027) \,\mathrm{m}$$

 $\alpha_x = (-1.17 \pm 0.061)$

Emittance Measurements: Pinhole Array Measurement (3)

- Relative intensity of beamlet images \rightarrow reconstruct phase space density
- Wrote code *PHSPDENS* to map each pixel on CCD to an area in phase space and calculate distribution density
- Emittance results show large source divergence due to lack of focusing layer

Simon C. Leemann • Thesis Defense • December 18, 2006

Conclusions & Outlook

- Full transverse phase space reconstruction of emitted bunches possible
- Different measurement techniques in agreement
- Test stand is fully operational and ready to measure new cathode types
- LEG Project needs new FEAs with
 - More current \rightarrow reach 5.5 A goal
 - Focusing layer \rightarrow lower source divergence \rightarrow lower emittance
 - PSI has started in-house development of new FEA cathodes
- Future tasks
 - Benchmark new PSI cathodes
 - Install and commission 3D mover motor system \rightarrow correct misalignment
 - Use pepper-pot (for space-charge dominated beams) \rightarrow long. sampling
 - Gun modification for laser-assisted FE from single tip field emitter