Second Order Fringe in MAD-X for the Module PTC
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Abstract

The various versions of MAD contain a second order fringe field effect for the ideal bend. The
expressions appeared in the famous SLAC-75 report where it is reported that they were derived by
Hindmarsh and Brown in an unpublished work. We would like to rederive these expressions and check
them. Moreover, we want to create maps for them which are not expansions around a “design orbit”
but true operators valid around arbitrary orbits or at least a larger class of orbits. As in the original
SLAC-75[1] report, our expression are expansions and are not meant to replace precise integration. We
simply want a knob which is “PTC-compliant,” that is to say, exact in the Talman sense.
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A Discussion of the SLAC-75 Expressions
A.1 The SLAC-75 Expressions

In SLAC-75, the linear vertical focussing at the entrance of a bend is given by

Figure 1: Rectangular Bend and Design Trajectory Geometry
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pl = p+ {—bo tan (81) + % (1+sin® (41)) } y (1)
where K is defined as
_ [Tb(2) (bo = b(2))
K = /_Oo —gbg dz (2)

Here g is the height of the vertical gap in the dipole. The quantity b(z) is the field scaled by the design py/q,
i.e., the so-called Bp. Here is a typical plot of b(z)/bo:
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Figure 2: Example of a Field Profile for B,

A.2 Real Calculation of a Fringe Effect

In our work we integrated some real field and compared it to something like Equation (1). Using the “Fully
Polymorphic Package” one can easily generate a Taylor series matrix for the edge by sandwiching the exact



map between an inverse drift and an inverse ideal bend. Therefore, calling T, the map of an edge, we must
have:

T = BE*}O(bO) © Ffsﬁs © D*E (3)

Here B is the transfer map for a constant by and it is generated by the Hamiltonian:

HZ—\/(1+5)2—p%—p§+bow (4)

The drift is the above Hamiltonian with by = 0. The Hamiltonian in the frienge region is given by:

H = /(482 (0 —a) —p2+b(2) @
e} (_1)nb[2n_1] ) on 1 d2n—1b
= R here b2~ = .
a nz::l @) Yy where b T (5)

We checked our work and the formulas of SLAC-75 using the following model:
1+ tanh(z/9)

b(Z) = bo 5
V() = bo 1- tcm2h2 (2/0)
Vi(x) = by —tanh(z/9) (;; tanhQ(z/é))
o
= — — ldeal Field
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Figure 3: B, and few relevant derivatives

The exact integration in Equation (3) and the SLAC-75 result do agree if we substitute for the integral
Kg the value §/2.
N.B. Presumably, the result of SLAC-75 include a pole face rotation of angle 3; that rotates
the pole face coordinates into the coordinates of the design trajectory. This transformation,
the so-called PROT of Dragt or the ROT_XZ of the code PTC, does not affect the vertical
plane in leading order. This is why it is not mentioned in our discussion.



A.3 Calling it “Quits”

The expression of Equation (1) is not PTC-compliant because it is obvious that [; is not a property of the
magnet but it just related to the incoming momentum, that is to say, it is the angle of a trajectory which
happens to be the so-called design trajectory in a code like MAD. In PTC we would like the expression to
work for any trajectory. Thus given our confidence in SLAC-75’s expressions, as confirmed by the integration
described in Sect. A.2, we can create the following generating function for the thin fringe:
2

F = pzxf+pyyf+5€f—% {bo%erOPL?)K (1 +Pi)}yf2 (7)
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where p, = \/(1+5)27p§,fp5.

This mixed generating function will reproduce the result of Equation (1) as well as introduced nonlinear
changes not inconsistant with the correct dynamical structure of this system.

It turns out as well will see, that Equation (7) contains most of the physics one can hope to extract from
a simple fringe second order calculation. We now prove this, for the record, in the next section.

B Operator Derivation of SLAC-75 Fringe Effects

B.1 Preliminary Manipulations

Following Dragt and others, we write an operator equation for the map F. Actually, if we denote the Lie
map with the curly letter F, it must obeys the equation

dF

= = F:—-H: (8)

We can use the Heisenberg representation and write F as follows:
F = PD (9)

Here D is the drift map and P is the residual effect of the bend. Obviously D obeys the equation:

dD

. 2 .
= - D: /(140 —p2 —p3: (10)

As for P, it obeys the usual interaction picture equation as in quantum mechanics:

d
ar = PD:-V:D!
dz
2
Vo= H4y/0+0°—p2—p2 (11)
= ) bV
n=1
Since, according to Equation (3), the map is to be integrated from z = —e, the map D in Equation (11) is
a drift from z = —¢ to an arbitrary position z:
Dr = x+(z+¢e)2
Dy = y+(z+e)y (12)

In Equation (11) all maps and operators are symplectic, and therefore the following is true:

aP
dz
where Vi(z,y;2) = V(z+ (z+e)2,y+ (2 +2)y;2) (13)

= p.-vh:



To reproduce SLAC-75’s results, we need to solve Equation (13) to second order. This can be done by

integrating both sides of the equation from z = —¢ to z:
z d z
/ P PV d
—€& dZ —€
=P = 1—|—/ PV d
=P .. = 1 +/ : —VZT, 2 d2 +/ dz’/ dz": VZT,, 5 V;, : (14)

We can rewrite Equation (3) for Lie operators as
T = D—E]:—E—>EBE—>O(bO)
= D*E'PDQEBEHO(bO)
= SD.B._0(bo) (15)
S is given by

linear term in V. second order term in V'

D_.P_..D. =1 +/ =W :dz’+/ dz’/ dz" - W e W s
—e —e

—€

where W, = V(z+z2',y+2y;2) (16)

B.2 Actual Calculation

Equation (16) is really the time ordered exponential found in standard quantum mechanics applied to the
Heisenberg representation. Anyone familiar with these techniques can write it down immediately. So the
real calculation starts here.

We decide to do the calculation no higher than second order in by and at most to y*. Having this in
mind, we can now write down the function W:

First order in b

y p b/2 )
W, = bfx'{—gz+—ﬂ4+~~} 1+ 3yt

2 4! 8p.

a

v o= y+azy (17)

The first term to consider is the linear term in Equation (16). The first term is not important as it mostly

changes the orbit:
/bﬁc'dz = x/ bdz—i—x’/ bz dz (18)
—E& —E& —E&
Then the term proportional to a can be integrated exactly to all orders!

€ b 2
/ dads = —=2—Y 5 (19)
—e 214 y,

This result is obtained by integrating by parts every term in the expansion for a until one gets down to b'.
It is just the standard result expect for the funny dependence on 3’. The next term is

1 { 2} 2.,
1+2° 3V ytdz (20)
/_5 8p-

Expanding ¥ (= y + 2zy’) and integrating, we see that Equation (20) requires only the following integrals:

I, = /b’Qz"dz n=0,--,4 (21)
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The terms from Equation (20) are all nonlinear, i.e., oc y*, for particles in the mid-plane. We will not study
them any further.

The second term in Equation (16) is far more complex! We will examine the effect on the momentum
py- To second order in by, we have:

€ 2
Ap, = / dz'/ dz" d'an v alay :py (22)
—€& —€
We now concentrate temporarily on the leading term of this expansion:
€ z/ 12 " b/ " " 2 bl ’ 2
Api,l = / dz'/ dz b (m +2z x') + :1:'? (y +2z y') by (w4 2'2") + x’é(y +2'y")" 1 py
—€ —€
A B le}

—_—~

€ ZI 1" 17 b/ 1" 17 2
/ dz'/ dz b (m +z x') +2a 22 (y +z y') : {:I:’b;, (y + z'y’)}
—E& —E&

_ [ Z i [ 2" {{A,C] + B, C]} (23)

[A,C] = bbby {[CL‘, ] (y+2'y)+ o (z’ - z”> [:I:,y’]}
[B,C] = blz,;);” {x' [y, '] {y2 + (2z'z,/ - z”2) Y+ 2z’yy'}

+a? [y, V'] {Qy (z' - z,,) +2y (z’ - z”) y'2} } (24)

In an attempt to get the SLAC-75 results, we retain only the terms proportional to y in Equation (24).

€ Z,
dApzbl/dyb:o = / dz’/ dz" {b’zlbz// [z, 2] + " [y, 9] b;'b’z” (Zl - z,,)} (25)
—E& —&

According to Equation (25), we must perform 2 integrals:

£ 2
Jo = / b, dz' / brdz" and Jyg — Jou
—€ —€
£ 2 ,
where Jg = / b’z,z'dz’/ bvdz
—E& —E&
and Jo; = / b..dz' / b2 dZ (26)
Let us look at Jy first:
Jo = / b.,dz’ / bdz
—€ —€

’

— bz// bdz —/ b2,dz’

/ b, (bo — b,)dz = gh2K (27)

—E&

In Equation (27), we assume that the asymptotic values have been reached, i.e., b(—e) = 0 and b(e) = bo.
We now proceed with Jqq:

N . " € 1 € de
J10 / blz'z/dzl/ b ndz =/ Wb,z dz = —/ =z dz
—€ —& —e 2 —_e dz

c 1 [ 1 1 [
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and J(n!

€ 2 2! &€
/ / / 1" 1" / 1" 1
Jor = / bzldz/ bz dz = bzf/ bz dz
—€ —€ —€

= bo/ b;zdz—/ b, 2 = bo/ b,z dz — Jio
—e —e —e

€
—/ b.b, zdz
—&

= bobZZ|E_E — bo/ bz dZ — J10 = bgé‘ — bo/ bz dZ — J10 (29)
Thus we have
Jl() - J01 = bo/ bz dz 7/ bi dz = gbgK (30)

We are now ready to compute the total second order effect given by Equation (25):

2
dApi,l/dy|y:0 = gbgK{[x,x'] +a’ [y,y’]}
1+6)%—p2  p2 (146)%—p?
_ 2 ( Y Dz Pz
R N A 1)
NG
[ZL’,:I,’/] z'? [y7y,]

This results should be compared with the “phenomenological” result of Sect. A.3, Equation (7). indeed
if we substitute 6 = 0, p, = 0, and p, = sin(51), then it agrees perfectly with the SLAC-75 result at least as
far as linear terms are concerned.

C PTC Implementation of SLAC-75 Fringe Effects

In PTC, we construct the following generating function as in Equation (7):

1
F = pyal +pyyl +6t7 - §<I>(pm,py,5)yf2 (32)
b 1407 -p2  p2 (1+6)°—p2
here ®(p,,p,,0) = — ghp K { — Y 2w 33
w (Pas Py 0) 1+y,2 9% 3 P2 3 (33)
—_———
[z,27] x’? [v,9']

PTC solves this equation at the end of any dipole element. The leading order term is compulsory and the
second order term proportional to K is optional. The formulas of this paper are only avaible for dipole in
the exact option. The elements using the expanded Hamiltonian ( as in TRACYII or SixTrack) do not use
any of the formulas of this paper: they use the infamous quadrupole thin lens which de facto incorporates
the standard linear term computed in this paper.

The results are

y' = 2
1+ ,/1-252%y
109 o
o — ~ZF . f
x :1:+28pmy
1909 2
o — g 22—t 34
+555Y (34)

The two remaining variables p, and ¢ stay constant.
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