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1. Introduction

 MOGA is the most commonly used algorithm in lattice op-
timization for ultra-high brightness storage rings.

« However, MOGA requires extensive runtime to arrive at a
Pareto front due to its stochastic nature and costly evalu-
ations of dynamic aperture (DA) and momentum aperture
(MA) based on many-turn particle tracking.

« Since Machine Learning (ML) has proven its efficiency
in building computational models to solve complex data-
iIntensive problems compared to traditional statistical meth-
ods, we have applied ML techniques to speed up MOGA.

2. Machine Learning Approach

» We first pre-process training data acquired from prior simu-
lations and use this data to obtain two well-trained models
using the neural network (NN) depicted in Fig. 1.

* We then use these two NN models to replace DA/MA par-
ticle tracking in MOGA while the rest of the MOGA setup
remains the same as in the original tracking-based MOGA
(Tr-MOGA).

* We evaluate this ML-based MOGA (ML-MOGA) on a sim-
pler 2-DoF problem and a more complex 11-DoF problem.
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Figure 1: 8-layer fully-connected (FC) NN architecture for DA
and MA prediction. Output dimension is indicated.

3. Optimization in 2 DoF

o Lattice optimization at ALS-U (before introduction of re-
verse bending and high-field bends) consists of 11 DoF as
well as several constraints and objectives. 9 DoF are linear
(quadrupoles) while 2 DoF are nonlinear.

* In the 2 DoF study, 9 linear DoF were fixed, leaving only 2
harmonic sextupoles (SH1,SH2), for a data input size of 2.

« Random data which is uniformly distributed in input param-
eter space is used for training.
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Figure 2: Solution space comparison between Tr-MOGA
runs and ML-MOGA runs with different random seeds.
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Figure 3: Input space comparison between Tr-MOGA runs
and ML-MOGA runs with different random seeds.

« We also studied the effect of training data sampling size on
the accuracy of our NN predictions.

The root mean square error (RMSE) proves to be very
robust, allowing us to reduce the sampling to as low as
20x20 without loss of fidelity.

Consequently, we can arrive at similar ML-MOGA results
with much smaller sets of training data, effectively reduc-
ing tracking effort to 400 samples for ML-MOGA vs. 2.5x%
10° for Tr-MOGA.
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Figure 4: RMSE increase in percent compared to the initial
sampling size choice of 115x 115.

4. Optimization in 11 DoF

* Unlike the 2-DoF problem, the 11-DoF optimization in-
cludes all 9 linear and 2 nonlinear variables. The first
step for both Tr-MOGA and ML-MOGA is to find reason-
able ranges for the 9 linear DoF (¢;).

 We then use only the first 10 generations of Tr-MOGA
data (samples violating any constraints are filtered out) as
training data to build NNs. Once the ML-MOGA run con-
verges, we again perform one tracking run involving inputs
(a;;) from the final ML-MOGA generation for validation pur-
poses. Finally, by combining this tracked generation with
the previous training data, we can retrain the NNs allowing
us to iterate this ML pipeline until it fully converges.

* To properly assess convergence among all MOGA runs,
we introduce two Euclidean distance metrics for input
and output space, respectively (M = MA, D = DA,
m = gen. no.):
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Figure 5: Distance metric for input variables (top) and solu-
tion space (bottom) for two Tr-MOGA runs with different ran-
dom seeds and one ML-MOGA run.
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Figure 6: Comparison in reduced solution space (emittance
omitted for clarity) between Tr-MOGA and ML-MOGA runs
with different random seeds.
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