

A Novel 7BA Lattice for a 196-m Circumference **Diffraction-Limited Soft X-Ray Storage Ring***

S.C. Leemann⁺, W. Byrne, M. Venturini, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA A. Streun, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland J. Bengtsson, Diamond Light Source, Oxfordshire, UK

Introduction

- ALS-U needs to increase brightness over ALS by ×100 at 1 keV
- At 2 GeV & 500 mA this calls for $\varepsilon_x = \varepsilon_y < 75$ pm rad (round beam, fully coupled) \rightarrow corresponds to $\varepsilon_0 \approx 90$ pm rad (bare lattice, flat beam) at zero current
- Baseline lattice is 9BA with 2 dispersion bumps for localized chromatic corrections \rightarrow chromatic beta beating \rightarrow limited off-energy DA \rightarrow limited MA

• Initial 5° UC bend angle provided by LGB needs to be increased to compensate for RB

Linear Optics Tuning

- Tune UC for ultra-low emittance and so that arc becomes higher-order achromat \rightarrow set UC tunes to $(3/7, 1/7) \times 2\pi$
- Model LGB as discrete slices \rightarrow optimize profile for min. ε_0 while fulfilling above conditions & assuming:
- peak bend field can be as high as 2 T
- vertical focusing (implement as transverse gradient) can

Resulting Performance

• 7BA can match 9BA baseline lattice's aggressive brightness

ε_0 (bare lattice)	$89\mathrm{pmrad}$
$\varepsilon_x = \varepsilon_y \pmod{\text{beam}}$	$57\mathrm{pmrad}$
$ u_x, u_y$	39.36,14.38
J_x	1.739
U_0 (bare lattice)	$457.7\mathrm{keV/turn}$
α_c (linear)	-1.25×10^{-4}
$\sigma_{\delta} \ (natural)$	1.066×10^{-3}
$\xi_{x,y}$ (natural \rightarrow corrected)	$-106.0, -35.9 \rightarrow -1.0$

- Despite heavy optimization of 9BA baseline lattice $\rightarrow \approx 1$ hour Touschek lifetime incl. effects of HHCs \rightarrow stability? (top-off injection frequency, top-off deadband), radiation safety?
- *New approach*: distributed chromatic correction → correct chromaticity at the source \rightarrow reduce chromatic beat \rightarrow large off-momentum DA \rightarrow large MA \rightarrow longer Touschek lifetime

Lattice Design

- Preserving 196-m circumference, 12-fold periodicity, and roughly 5.3-m ID straight \rightarrow base alternate lattice on a 7BA (leaves space for one SF & SD in each unit cell)
- The 5° dipole of the 7BA would render larger emittance than the 3.33° dipole of the 9BA \rightarrow employ longitudinal gradient bends (LGBs) to suppress dispersion where it creates emittance (i.e. in locations of small bending radius ρ)

only be performed in outer LGB sections where bend field has tapered off

- Choosing RB angle for minimum emittance (64 pm rad achieved here for 0.95°) gives quasi-isochronous lattice
- However, because of ultra-low emittance can detune from minimum-emittance condition \rightarrow sizable momentum compaction with still very low emittance

• DA incl. field & alignment errors well in excess of ±1 mm (approximately required for 100% efficiency on-axis injection)

Suppress *H* (i.e. focus dispersion) where bending is strong

• In order to exploit the LGB, we also employ a reverse bend (RB) which allows focusing the dispersion independently of the beta function \rightarrow LGB is tuned for lowest emittance, while the RB (displaced QF) allows choosing a favorable cell tune & prevents the lattice from becoming quasi-isochronous

RB contribution can dominate \rightarrow sizable (negative) momentum compaction

- We have designed a lattice with realistic magnets lengths and magnet spacing to limit cross-talk. Drift space for 120 BPMs and some vacuum equipment is provided.
- Each 7BA consists of 5 unit cells (UCs). On each side, a dispersion suppressor (DS) and matching cell (MC) connect

- For the UC we choose 1.27° which renders for the entire storage ring $\alpha_c = -1.25 \times 10^{-4}$ and $\varepsilon_0 = 89$ pm rad
- DS focusing tuned to cancel any dispersion into MC & straight
- MC tuned for $\beta_{x,y} \approx 2.5$ m at ID source points and storage ring tunes near linear coupling resonance (facilitating round beam operation)
- Max. required quadrupole gradient: <18 m⁻² \rightarrow 18 mm bore

Nonlinear Optics Tuning

- 9 sextupole families (SF/SD/SH) tuned for:
 - set linear chromaticities to –1
 - cancel residual 1st-order resonance driving terms (RDTs)
 - choose suitable 2nd/3rd-order chromaticities to obtain favorable chromatic tune footprint

• Off-momentum DA with field & alignment errors shows sizable DA even at $\pm 3.5\% \rightarrow$ provides large MA

- Large MA (incl. field & alignment errors) provides 4 hours Touschek lifetime at 500 mA (round beam, incl. HHCs)
- Note, LMA limited in most locations by 3.5% RF acceptance. Since ALS RF system can provide $\approx 4\%$ incl. ID losses \rightarrow expect up to 6 hours Touschek lifetime available.

the ID straight with the UCs.

- minimize 2nd-order RDTs & overall required sextupole strength
- 3 octupole families tuned to:
 - adjust 1st-order amplitude-dependent tune shifts \rightarrow tune footprint is minimized and kept clear of potentially dangerous resonances
- Target values achieved through weighted SVD provided by OPA, 6D tracking incl. errors provided by Tracy-3 \rightarrow iterate
- Max. required sext/oct gradients: <1750 m⁻³, <19,000 m⁻⁴

*) Work supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231

+) SCLeemann@lbl.gov

Conclusions & Outlook

• 7BA lattice matches aggressive brightness of the 9BA baseline lattice, while providing more than twice the DA & Touschek lifetime

• Next steps: iterations with magnet & vacuum engineering (refine lattice for technical feasibility), collective effects studies (stability at negative α_c), and further optimizations to increase overall brightness (lower ID $\beta_{x,y}$, lower ϵ_0 , MOGA)

