MAX IV Emittance Reduction and Brightness Improvement

Simon C. Leemann*, Mikael Eriksson, MAX IV Laboratory, Lund University, SE-22100 Lund, SWEDEN

In a Nutshell

- MAX IV 3 GeV storage ring commissioning to start July 2015 and design parameters should be achieved by June 2017.
- For the following period 2017–2026, MAX IV Strategic Plan sets several upgrade goals; most important are brightness improvements and a more flexible timing structure.
- Brightness improvements shall be achieved through coupling reduction, better matching of straight section optics to IDs, and an upgraded optics with lower lattice emittance.
- We present a first upgrade candidate that allows for a 33% brightness increase without requiring new power supplies or recabling magnets.

Strategy & Limitations

- Define three stages of optics upgrade: 1) modifications that do not require new power supplies or recabling, 2) allow exchange of magnet power supplies, 3) allow recabling of magnets so existing families can be split.
- This study deals with the first stage: modify strengths of existing quadrupole families in arcs and ID straights within power supply limits.
- DA requirements are considered unchanged since injection scheme shall be retained.

One achromat of the MAX IV 3 GeV storage ring. Quadrupoles indicated in red. Quadrupole doublets in the straights (circles) and horizontally focusing quadrupoles in the arcs (arrows) are highlighted.

MAX IV 3 GeV Storage Ring

Aerial photograph of the MAX IV site taken on May 15, 2014 (courtesy P. Nordeng).

- Recently: linac beam commissioning commenced.
- July 2014: 3 GeV storage ring building construction completed; immediately followed by start of installations.
- July 2015: 3 GeV storage ring beam commissioning starts.
- June 21, 2016: inauguration of the MAX IV facility.
- June 2017: 3 GeV storage ring post-commissioning activities completed; design parameters achieved.

Optics

- Increased focusing strength in the arc quadrupoles → reduced arc dispersion → lattice emittance reduced from 328 pm rad (design) to ≈270 pm rad.
- Vertical beta function in the ID straights can be lowered to 50% (or less) of its 2 m design value by retuning the quadrupole doublets in the ID straights → pay attention to peak value in the matching cell dipoles (limits vertical acceptance, increases natural vertical chromaticity).
- Horizontal beta function in the ID straights can be lowered to 7–8 m without spoiling DA and hence injection efficiency.
- So far, reasonable DA achieved for candidates where the vertical beta function in the ID straights remains above 1 m while limiting the horizontal beta function reduction to ≈ 7.5 m.
- Adjustments with the PFSs in the dipoles (allowing +/- 4% overall tuning of the vertical focusing gradient) have so far not been required.
- Peak dispersion reduced by 20% → 18% reduction of emittance.
- Reduction of dispersion → reduction of momentum compaction → increase of RF acceptance → improved Touschek lifetime (in addition to Touschek lifetime growth from emittance reduction!).

PRST-AB **12**, 120701 (2009)
PRST-AB **14**, 030701 (2011)

Machine functions for one half of an achromat of the MAX IV 3 GeV storage ring. Design optics are indicated with dashed lines, solid lines indicate modified optics.

	\mathbf{Design}	${f Upgrade}$
ε_0 (bare lattice)	$328\mathrm{pm}\mathrm{rad}$	$269\mathrm{pm}\mathrm{rad}$
$ u_x, u_y$	42.20,16.28	44.20, 14.28
$\xi_x, \xi_y (\text{natural})$	-50.0, -50.2	-50.7, -76.5
J_x	1.847	1.719
σ_{δ} (natural)	7.69×10^{-4}	7.29×10^{-4}
α_c (linear)	3.06×10^{-4}	2.60×10^{-4}

Required Norm. Gradient				
Family	\mathbf{Design}	$\mathbf{Upgrade}$	Rel. Change	
QF	$4.030\mathrm{m}^{-2}$	$4.296\mathrm{m}^{-2}$	+6.6%	
QFm	$3.774{\rm m}^{-2}$	$3.781{\rm m}^{-2}$	+0.2%	
QFend	$3.654{\rm m}^{-2}$	$3.700{\rm m}^{-2}$	+1.3%	
QDend	$-2.504\mathrm{m}^{-2}$	$-2.562\mathrm{m}^{-2}$	+2.3%	
SFi	$207.4{\rm m}^{-3}$	$211.8{\rm m}^{-3}$	+2.1%	
SFo	$174.0{\rm m}^{-3}$	$190.0{\rm m}^{-3}$	+9.2%	
SFm	$170.0{\rm m}^{-3}$	$190.0{\rm m}^{-3}$	+11.8%	
SD	$-116.6\mathrm{m}^{-3}$	$-129.9\mathrm{m}^{-3}$	+11.4%	
SDend	$-170.0\mathrm{m}^{-3}$	$-160.0\mathrm{m}^{-3}$	-5.9%	
OXX	$-1649{\rm m}^{-4}$	$-3141{\rm m}^{-4}$	+90.5%	
OXY	$3270{\rm m}^{-4}$	$2410{\rm m}^{-4}$	-26.3%	
OYY	$-1420\mathrm{m}^{-4}$	$-944.2\mathrm{m}^{-4}$	-33.5%	

Results

- Lattice emittance has been reduced to 269 pm rad (-18%) while matching of the straight section optics to IDs has been improved.
- Resulting optics shows DA that is both compatible with existing injection scheme and gives sufficient Touschek lifetime.
- The overall result is a 33% increase of brightness without requiring any new power supplies or recabling of magnets.
- Emittance blow-up from IBS at 500 mA stored current (5 nC per bunch) will be strong; will necessitate bunch lengthening from harmonic Landau cavities.

 PRST-AB 17, 050705 (2014)
- Can expect Landau cavities and IDs to result in equilibrium emittance below 250 pm rad even at 500 mA stored current.
- Future studies will focus on nonlinear optics improvements and a further reduction of lattice emittance.

Brightness increase (at 1 Å) from the modified optics compared to the design optics for different settings of emittance coupling in the MAXIV 3 GeV storage ring.

Bare lattice on-momentum DA for the modified optics. Solid line indicates ideal DA while crosses correspond to 20 error seeds incl. misalignments and magnet errors.