Status of the MAX IV Storage Rings

S.C. Leemann*, J. Ahlbäck, Å. Andersson, M. Eriksson, M. Johansson, L.-J. Lindgren, M. Sjöström, E. Wallén MAX-lab, Lund University, SE-22100 Lund, SWEDEN

At a Glance

Timeline

- April 2009: MAX IV Facility granted funding by Swedish authorities
- Summer 2010: Start of construction (next to future ESS site)
- 2012-2014: Commissioning of guns, linac, and both storage rings
- 2015: Regular user operation begins

Facility Overview

- MAX IV uses different machines [1] tailored to different user demands MAX IV consists of
 - Short-pulse facility (SPF) [2] and FEL (Phase 2)

MAX-lab

- 3 GeV storage ring (\rightarrow x-ray users) [3] -1.5 GeV storage ring (\rightarrow IR and UV users)
- The MAX IV 3.4 GeV linac drives the SPF/FEL and acts as a full-energy injector for both storage rings (via two transfer lines) \rightarrow continuous top-up

3 GeV Storage Ring

- Detailed design completed [3]
- Multibend achromat (MBA): $\varepsilon_x < 0.3$ nm rad
- 528 m circumference, 500 mA top-up
- 20 MBAs, 19 ID straights
- 4 x 2 m damping wigglers
- Improvements over published design:
- Fully-integrated magnet design in all cells
- NEG-coated Cu vacuum chamber
- Pulsed-sextupole injection
- \rightarrow no injection bump required
- \rightarrow transparent injection
- Ongoing studies:
 - Design and optimization of IDs [4]
 - Orbit feedback studies
 - Coupling correction
 - Suppression of vertical dispersion

Energy [GeV]	3.0
Main radio frequency [MHz]	99.931
Harmonic number	176
Circulating current [mA]	500
Circumference [m]	528
Number of achromats	20
No. of long straight sections available for IDs	19
Betatron tunes (horizontal/vertical)	42.20 / 14.28
Natural chromaticities (horizontal/vertical)	-49.8 / -43.9
Corrected chromaticities (horizontal/vertical)	+1.0 / +1.0
Momentum compaction factor	$3.07 imes10^{-4}$
Horizontal damping partition J_x	1.86
Horizontal emittance (bare lattice) [nm rad]	0.326
Horizontal emittance (with 4 PMDWs) [nm rad]	0.263
Radiation losses per turn (bare lattice) [keV]	360.0
Radiation losses per turn (with 4 PMDWs) [keV]	572.1
Natural energy spread	0.077%
Energy spread (with 4 PMDWs)	0.096%
Required dyn. acceptance (hor./ver.) [mm mrad]	7.1 / 1.3
Required lattice momentum acceptance	$\pm 4.5\%$

Magnets

- Magnets of each cell are machined into a solid iron block
 - 7 blocks per MBA in the 3 GeV ring
 - 1 block for the entire DBA in the 1.5 GeV ring
- Combined-function magnets for compact optics
- Gradient dipoles in both rings
- Quads with integr. sextupole in 1.5 GeV ring
- Highly-integrated magnet design
- \rightarrow compact lattice
- Solid-iron magnet block \rightarrow magnets = girder
- \rightarrow excellent alignment
- Massive concrete supports with mounting plate \rightarrow excellent stability (vibrational EF > 100 Hz)

1.5 GeV Storage Ring

- Detailed design has just begun
- Some MAX II & III IDs will move to this king ____!
- Double-bend achromat (DBA): $\varepsilon_x = 6$ nm rad
- 96 m circumference, 500 mA top-up
- 12 DBAs, 10 ID straights, 2 RF cavities + LC
- Heavy emphasis on combined-function magnets and magnet integration
- Dipoles contain defocusing gradient

Energy [GeV]	1.5
Main radio frequency [MHz]	99.931
Harmonic number	32
Circulating current [mA]	500
Circumference [m]	96
Number of achromats	12
Length of straight section [m]	3.5
Betatron tunes (hor/ver)	11.22/3.14
Natural chromaticities (hor/ver)	-22.9/-17
Corrected chromaticities (hor/ver)	+1.0/+1.0
Momentum compaction factor	3.04×10^{-3}
Hor. emittance (bare lattice) [nm rad]	6.00
Radiated power (bare lattice) [keV/turn]	117.2
Natural energy spread (bare lattice)	7.51×10^{-4}
Req. dyn. acc. (hor/ver) [mm mrad]	61/6
Req. lattice mom. acceptance	$\pm 3.0\%$

Vacuum System

- NEG-coated Cu pipes \rightarrow distributed pumping
- Cooling channel brazed to chamber @ dipoles • No lumped absorbers, few pumps
- Excellent experience with prototype in MAX II [5]
- 3 GeV: circular, 24 mm ø
- 1.5 GeV: elliptical, 40x20 mm (extra dispersion)
- Bake large section in situ \rightarrow few bellows and flanges
- BPM/corrector sections stainless steal

RF System

 Because of SPF storage rings don't have to be tailored to short bunches • 100 MHz main RF system + 300 MHz Landau cavities (all n.c.) 100 MHz cavities similar to those used in MAX II and MAX III

(→ EPAC'02, p.2118)

- 300 MHz Landau cavities are being designed in-house
- Long bunches (~ 50 mm)
- increase Touschek lifetime
- counteract instability (narrow chamber!)
- \rightarrow run at low $\xi \rightarrow$ large MA
- reduce ε blow-up from IBS

MAX IV Project → http://www.maxlab.lu.se/maxlab/max4

[1] MAX IV Detailed Design Report, in preparation, http://www.maxlab.lu.se/maxlab/max4/index.html. [2] S. Werin, S. Thorin, M. Eriksson, J. Larsson, Nucl. Instrum. Methods Phys. Res., Sect. A 601, 98 (2009). [3] S.C. Leemann, Å. Andersson, M. Eriksson, L.-J. Lindgren, E. Wallén, J. Bengtsson, A. Streun, Phys. Rev. ST Accel. Beams, 12, 120701 (2009). [4] E. Wallén, Insertion Devices for the MAX IV Light Source, WEPD038, this conference. [5] A. Hansson, E. Wallén, M. Berglubd, R. Kersevan, M. Hanh, J. Vac. Sci. Technol. A 28, 220 (2010).

*) simon.leemann@maxlab.lu.se

WEPEA058, IPAC'10, Kyoto, Japan, May 23-28, 2010