

Energy Calibration With High Precision

- Bending magnet field measurements (Hall Probes): $\rightarrow \frac{\Delta E}{E} = (1-2) \cdot 10^{-3}$
- For higher precision \rightarrow Resonant Spin Depolarization
- In a flat machine the ideal electron sees $\vec{B_{\perp}} \rightarrow \text{spin vector precesses}$ according to Thomas-BMT equation:

Polarization

• Spin-flip synchrotron radiation (only $\approx 10^{-11}$ of total radiation power) \rightarrow polarization build-up anti-parallel to main bending field:

 $P(t) = P_0(1 - e^{-\frac{t}{\tau}}) \qquad \frac{1}{\tau} = \frac{1}{\tau_p} + \frac{1}{\tau_d} \qquad P_0 = P_{ST} \frac{\tau_d}{\tau_p + \tau_d}$ $P_{ST} = 92.4\% \text{ theoretical maximum for a flat ring}$ $\tau_p = \left(\frac{5\sqrt{3}}{8} \cdot \frac{e^2\hbar}{m_e^2c^2}\right)^{-1} \cdot \frac{\rho^3}{\gamma^5} \qquad @SLS: \tau_p = 1873 \text{ s} (\gamma = 4700)$ $@LEP: \tau_p = 360 \text{ min} (\gamma = 86000)$ $\tau_d \propto (a\gamma)^{-2} \qquad \tau_d \gg \tau_p \text{ for low-energy machines}$

• How to measure polarization without a polarimeter?

- Touschek lifetime is polarization dependent: $\sigma_{ts} = f_1 P^2 f_2$
- Choose filling with high bunch current $\rightarrow \tau$ is dominated by τ_{ts}
- Identify changes in $I \cdot \tau_{ts}$ with changes in P

- For SLS storage ring: $\tau_p = 1873$ s
- From fit: $\tau = (1837 \pm 1) \text{ s} \rightarrow \tau_d = 95.6 \cdot 10^3 \text{ s}$ $\rightarrow P_0 = P_{ST} \cdot \frac{\tau_d}{\tau_p + \tau_d} = 91\%$

Xth ESLS Workshop -

Resonant Depolarization

- Feed sinusoidal signal to vertical tune kicker magnet
- Sweep signal frequency over interval around resonant depolarizing frequency

 → At ω_{res-depol} the ensemble's mean spin vector can be tilted into the horizon-tal plane (together with spin diffusion)
 → Reduce polarization
 → Reduce I · τ_{ts}
- Verification of the resonance through (uncalibrated) loss monitor coincidence signal from two scintillators installed in the vicinity of in-vacuum undulator U24
 → Pairs of Touschek-scattered electrons

- Froissart-Stora fit for isolated resonance crossing
 - $ightarrow E = (2.4361 \pm 0.00018) \text{ GeV}$
 - $\rightarrow \frac{\Delta E}{E} \approx 7 \cdot 10^{-5}$ (10²× higher than Hall probe measurements!)
- Energy is 1.5% higher than determined from dipole calibration

 → Confirms previous increase of the quadrupole and sextupole magnet strength of +1.2% with respect to design at 2.4 GeV

Xth ESLS Workshop

Xth ESLS Workshop -