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1 Abstract

Due to the presence of spin flip radiation electrons get polarized anti-parallel
to the main bending magnet field. Polarization values close to the Sokolov-
Ternov level of 92.4% are expected for the Swiss Light Source (SLS) storage
ring at 2.4 GeV. Resonant excitation at the spin precession frequency de-
polarizes the electron beam. This frequency happens to be proportional to
the average beam energy with a factor which only depends on the g-factor
of the electron. The polarization level influences the beam lifetime due to
the polarization dependent Touschek scattering process. A sudden change
of polarization gives rise to a change of the loss rates. Thus a fast vertical
kicker magnet driven by a frequency generator and a fast loss monitor are
sufficient to carry out the energy calibration measurement.

In the first part of the thesis some predictions for the anticipated polarization
level as well as for the desired kicker parameters and depolarization times
are made. Experiments show that polarization values well above 80% can be
achieved in the SLS storage ring.

In the second part of the thesis the energy calibration experiments carried
out are described involving the readout of loss monitors and the control of
a frequency generator driving a fast kicker magnet. The energy calibration
experiments have shown that the SLS storage ring operates at an actual beam
energy of (2.4361±0.00018) GeV which is 1.5% higher than the design energy!
This large discrepancy remains to be explained in further experiments.
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2 Introduction

2.1 Previous Electron Beam Energy Measurements

In order to understand beam dynamics in the SLS Storage Ring it is of funda-
mental interest to know the precise beam energy. Once the energy is known
further studies on beam energy stability over beam lifetime, energy shifts
and non-linearities of the momentum compaction factor can be performed.

Until now the most precise beam energy measurements have been calibra-
tion measurements of the dipole fields in the bending magnets with Hall
probes. These measurements have led to a presumed energy precision [1] of
∆E
E

= (1− 2) · 10−3.

In order to get the beam energy with a precision better than ∆E
E

= 10−3 new
measures have to be taken. One possibility is to measure the resonant exci-
tation frequency at which the spins ensemble gets resonantly depolarized [2].
This technique has recently been used successfully at ELSA [3], BESSY II [4]
and ALS [5]. The next sections will discuss polarization of electron beams,
depolarizing effects and will explain how the polarization level of an electron
storage ring can be determined.

2.2 Polarization of Electron Beams

As first mentioned by Ternov, Loskutov and Korovina in 1961 electrons grad-
ually polarize in storage rings due to sustained transverse acceleration while
orbiting. The mechanism is the emission of spin-flip synchrotron radiation:
While being accelerated, electrons radiate electromagnetic waves in quanta
of photons which carry a spin.

Therefore two cases must be distinguished: After emitting the synchrotron
photon the electron spin stays in its initial state or flips over. It has been
shown [6] that only an extremely small fraction (∼ 10−11) of the emitted
power is due to spin-flip radiation, the large fraction of other synchrotron
emissions has no influence on the electron’s spin. Nevertheless, the process
of spin-flip radiation is crucial in order to understand the meaning of beam
polarization.

The transition rates for the two possible spin-flips have been calculated [6] [7]
to be:

W↑↓ =
5
√

3

16
· e2γ5h̄

me
2c2ρ3

·
(

1 +
8

5
√

3

)
(1)
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W↓↑ =
5
√

3

16
· e2γ5h̄

me
2c2ρ3

·
(

1− 8

5
√

3

)
(2)

where γ is the Lorentz factor and ρ is the instantaneous bending radius. The
symbol ↑ denotes the spin along the guiding dipole field, whereas the symbol
↓ denotes a spin against the guiding dipole field.

The difference between these two rates causes an injected electron beam
to get polarized anti-parallel with respect to the guiding dipole field (for
positrons the accumulated polarization would be along the guiding dipole
field). The maximum achievable polarization level in a planar ring without
imperfections is given by:

PST =
W↑↓ −W↓↑
W↑↓ +W↓↑

=
8

5
√

3
= 92.38% (3)

where PST is the Sokolov-Ternov Level of polarization [8]. The time constant
of the exponential build-up process of this equilibrium polarization by the
initially unpolarized beam is:

τp = (W↑↓ +W↓↑)
−1 =

(
5
√

3

8
· e2h̄

me
2c2

)−1

· ρ
3

γ5
(4)

In case of the SLS storage ring τp is roughly 31 minutes. So finally, we would
expect polarization build-up to be described by:

P (t) = PST

(
1− exp

(
− t

τp

))
(5)

Meaning that an unpolarized beam can be injected into the SLS storage
ring and after roughly an hour over 85% of the beam will be fully polarized
anti-parallel to the guiding dipole field!

However we have (until now) neglected diffusion effects on spin orientation.
Similar to the fact that radiation damping does not lead to dimensionless
beam size due to quantum emission, spin-flip radiation is accompanied by the
depolarizing effect of spin diffusion. Thus the measured beam polarization
is an equilibrium state and shall be examined in the next chapters.
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2.3 Spin Dynamics

The electron spin interacts with the electromagnetic field through the mag-
netic moment associated with the spin:

~µ =
ge

2mec
h̄~S (6)

where g is the gyromagnetic ratio of the electron . The deviation of this value
from 2 is the anomalous magnetic moment of the electron:

a =
g − 2

2
= 0.00115965 (7)

We consider an electron at rest in a magnetic field ~B; the precession equation
of motion for the spin is the Larmor equation:

d~S

dt
= ~Ω× ~S (8)

with the angular velocity

~Ω = − ge

2mec
~B (9)

Using Lorentz transformations the last equations can be rewritten [6] for

a relativistic electron moving in the electromagnetic field ~E and ~B in an
accelerator:

~Ωlab = − e

mec

[(
a +

1

γ

)
~B − aγ

γ + 1
~β
(
~β · ~B

)
−
(
a +

1

γ + 1

)
~β × ~E

]
(10)

which, when substituted into equation 8 (where ~S is in the rest frame of
the electron) is called the Thomas-BMT Equation where BMT stands for
Bargman, Michel, Telegdi [9].

In a storage ring like SLS several types of fields are applied to the electron
and are seen by the circulating particle periodically with period 2πR, there-
fore it is more convenient to change the time variable t into the traveled
distance of the electron s = βct. Most of the applied fields (quadrupole or
sextupole magnets) only have an effect on an electron’s orbit if its trajec-
tory deviates from the designed circular orbit. The ideal electron traveling

7



along the designed orbit will only see the guiding magnetic dipole field with
~B(s) = ~B(s + 2πR) as well as the accelerating electric field ~E. The ac-
celerating field however, does not cause spin precession on the ideal electron
because ~E ‖ ~β. So we finally derive the spin precession of a highly relativistic
( 1
γ
� 1) electron to be:

d~S

ds
= − e

mecγ

(
(1 + a) ~B‖ + (1 + aγ) ~B⊥

)
× ~S (11)

where ~B‖ and ~B⊥ are the magnetic fields parallel and perpendicular to the

trajectory. In a flat machine (like SLS) the ideal electron sees ~B⊥ ‖ ~ez
(leading to Thomas precession) and vanishing ~B‖ (leading to Larmor preces-
sion) [10] [11]. We now are able to write the spin precession frequency in the
particle’s rest frame (i.e. in machine coordinates):

~Ωsp =
e ~B⊥
mecγ

· aγ (12)

with the relativistic cyclotron frequency (the revolution frequency of the
particles in the storage ring)

ω0 =
e ~B⊥
mecγ

(13)

and the spin tune

ν = aγ (14)

describing the number of times the spin vector precesses around the bend-
ing field vector for one turn of the particle around the ring. This is shown
schematically in Figure 1. The relationship between spin precession fre-
quency and energy of the particles (equation 12) is the mechanism which is
used to determine the precise energy of the electrons in the SLS storage ring
(see chapter 3.1).

A solution to equations 11 and 12 for the flat machine therefore leads to
~Sz (the component of the spin in direction of the main bending field ~B⊥)

remaining constant. The other components ~Sx, ~Sy are statistically distributed
among the electrons in the beam. After integration over all the electrons in
the ensemble the only remaining component is ~Sz. The time-integration of
the remaining component over the ensemble leads to a constant degree of
polarization.
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Figure 1: Precession of the electron spin around the main bending magnet
field.

2.4 Depolarizing Effects

In a real storage ring like SLS electrons oscillate around a certain trajec-
tory which is repeated during every revolution, the so called closed orbit.
The closed orbit is determined among others by radial field errors (vertical
closed orbit) and vertical field errors (horizontal closed orbit) as well as mis-
aligned quadrupoles and sextupoles — these errors cause the closed orbit to
go through the elements off-centered. An electron not on the closed orbit
(deviations in the order of ∼ µm from the closed orbit) will perform betatron
oscillations around it; this motion is however damped by synchrotron radia-
tion. Because the electrons do not necessarily pass quadrupole or sextupole
magnets in their center, they see perpendicular fields in addition to the main
bending field. Furthermore the electrons see the time-varying fields of kicker
and corrector magnets as well as possible errors like misalignment of mag-
nets or dipole rolls (i.e. when a dipole magnet’s misalignment is a rotation
around the design orbit). All these additional field components have to be
considered in equation 11.

Longitudinal magnetic fields (found in insertion devices and in case of dipole
pitch, i.e. when a dipole is aligned out of the horizontal plane) lead to Lar-
mor precession of the spin around the electron’s momentum axis resulting in
a change of ~Sz. Radial magnetic fields (found in quadrupoles, sextupoles and
vertical kicker magnets as well as in case of dipole rolls) lead to Thomas pre-
cession perpendicular to the electron’s momentum axis, which again results
in a change of ~Sz (see figure 2).

If these additional fields in conjunction with spin diffusion result in ~Sz = 0
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Figure 2a: Thomas Precession. Figure 2b: Larmor Precession

we refer to a depolarized beam which has a polarization degree of zero3. The
important difference between depolarizing effects is their energy dependency.
As shown in equation 11 precession due to longitudinal fields depend inversely
on the energy whereas radial and vertical fields lead to energy independent
precession; therefore in high energy machines the longitudinal field effects
can be neglected when compared to transverse fields.4

In order to depolarize the beam at SLS (flat machine) radial fields are needed.
Applying the field from a time-varying vertical kicker magnet, the spin’s
precession cone angle is enlarged from 0 towards π

2
. Together with the effect

of spin diffusion this leads to the point where ~Sz = 0 when integrating over
many electrons therefore resulting in zero polarization (see figure 3).

Assume a vertical kicker magnet applying to the electrons in the storage ring

3This refers to a simple model. Actually one should find a periodic solution of the
Thomas-BMT equation by integrating around the periodic closed orbit. Similar to the
fact that horizontal and vertical displacements from the design orbit lead to a periodic
solution for the orbital motion (the closed orbit) there is a periodic solution of the Thomas-
BMT equation on the closed orbit for the spin vector ~n0 which obeys ~n0(s+ L) = ~n0(s).

This more detailed approach shows that in a perfectly flat machine ~n0 ‖ ~B⊥ ‖ ~ez but in

real machines ~n0 has slight deviations from ~B⊥ which in fact determines the equilibrium
polarization level. [10]

4However one must keep in mind that in storage rings typical field errors (from magnet
misalignment for example) are proportional to the beam energy E, i.e. after passing
through an error field the electron’s angular deflection is independent of E. Yet for the
spin the dependency is different: The spin vector is perturbed by an angle aγθ which is
proportional to E. Hence the higher the beam energy, the more sensitive the electrons are
to errors and therefore the more vulnerable the beam is to depolarizing effects. This is
well demonstrated when comparing typical levels of polarization at LEP (11% at 50 GeV)
and at SPEAR (90% at 3.7 GeV). [12]
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Figure 3: The Spin diffusion process.

a radial magnetic field ~Bkick. The precession frequency along the electron’s
momentum direction according to equations 11, 12 is given by:

~Ω = −e
~Bkick

mec
· a (15)

This process is energy independent as already mentioned. But this kicker
magnet’s time varying magnetic field not only has an influence on the elec-
tron’s spin, but also on the trajectory of the electrons. When passing the
kicker magnet the electrons are “kicked” vertically from their trajectory and
a betatron oscillation around the closed orbit is excited. Normally the be-
tatron frequency is far enough away from the chosen kicker frequency, so
no resonance conditions are fulfilled; therefore the beam’s deviation from
the closed orbit remains very small. Nevertheless the electrons will continue
on their trajectory around the ring and pass a quadrupole magnet where
their displacement from the closed orbit can lead to a modification of the
depolarizing effects induced by the kicker magnet.

While passing the kicker magnet the electron obeys to the simple equation
(see equation 12)

d~S

ds
= ~Ωsp × ~S = ~S ×




0
eBkick
mec
· a

0


 (16)

which has the solution [13]
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~S =




√
1− Sy2 · sin( ea

mec
Bkick · s+ ϑ)

Sy = const

√
1− Sy2 · cos( ea

mec
Bkick · s+ ϑ)




(17)

When the electron passes the depolarizing kicker its spin precession cone
angle is widened by:

∆θ =
ea

mec
· (Bkick · l) (18)

where l is the length of the kicker. The kicker magnet actually kicks according
to a sinusoidal waveform so we have to take in account that the real kicker
strength is a time averaged value:

Bkick =
2

π
Bkick (19)

and therefore the actual widening in the kicker (per revolution) is:

∆θ =
2

π

ea

mec
· (Bkick · l) (20)

2.5 Resonant Depolarization

Using a very strong kicker magnet the spin ensemble could be tilted into
the horizontal plane during one pass through the kicker field, but without
spin diffusion this does not lead to beam depolarization. However over many
revolutions around the ring it is possible to tilt the mean spin vector bit by
bit to the horizontal plane by using time-varying magnetic fields in resonance
with the electron’s spin revolutions. This procedure is depicted in figure 4.

Recalling equation 20 we can calculate the opening angle of the precession
cone after n revolutions:

θ = n ·∆θ (21)

and since we know that depolarization is reached by tilting the mean spin
vector into the horizontal plane (over a time which is long enough to allow
spin diffusion), we can define the depolarization time τdepol:
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Figure 4: For illustration: Resonant widening (half-integer resonance) of
the precession cone by a time-varying magnetic kicker field. Because the
electron is in this field only for a very short time (grey boxes) there are

several resonant frequencies (depicted by the solid and dashed curves). ν0
−1

stands for the electron’s revolution period around the ring, while νkick
−1 is

the period of the kicker magnet strength. [13]
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θ = n ·∆θ
= n ·

[
2

π

ea

mec
· (Bkick · l)

]

= τdepol · ν0 ·
[

2

π

ea

mec
· (Bkick · l)

]

!
=

π

2
(22)

and therefore, we derive:

τdepol =
π

2
·
[

2

π

ea

mec
· (Bkick · l)

]−1

· 1

ν0

(23)

In the case of the SLS storage ring this leads to:

τdepol [s] ≈ 3.48 · 10−6 · 1

Bkick · l [Tm]
(24)

If we require depolarization time not to be longer than a second it can be
derived from equation 24:

Bkick · l ≥ 3.48 · 10−6 T ·m (25)

Such values can be well achieved with the multi-bunch feedback kicker mag-
nets installed at SLS (B · l < 10−4 T ·m).

2.6 Beam Excitation and Resonances

As already mentioned in chapter 2.3 there is a relationship between spin
motion and orbital motion; this shall be examined in this section. Assume an
electron performing vertical betatron oscillations according to Hill’s Equation
and consider these oscillations damped weakly:

d2z

dt2
+ δ

dz

dt
+ ωβ,z

2z = 0 (26)

where δ is the damping constant and ωβ,z is the vertical betatron oscillation
frequency. Now a vertical kicker magnet shall be used to excite the beam.
Compared to the perturbation of the beam through the kicker magnet damp-
ing is negligible:
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d2z

dt2
+ ωβ,z

2z = F (t) (27)

The radial field F (t) is time dependent, but it is more complicated than sim-
ply ∝ cos(2πνkickt) because the electron only sees the excitation during the
small period of time in which it travels through the kicker magnet. Therefore
F (t) can be arranged as a cosine multiplied with a step function [13]:

F (t) =

[
a0 +

∞∑

n=1

an cos(n2πω0t)

]
· cos(2πωkickt) (28)

where ω0 is the revolution frequency. The solution to equation 27 is:

z(t) =
∞∑

n=0

An cos [2π(ωkick ± nω0)] (29)

and the amplitudes are determined by:

An ∝
1

ωβ,z2 − (2πωkick ± n2πω0)2
(30)

The resonance condition leads to:

ωres = | ωβ,z
2πω0

∓ n | ·ω0 = | Qz ∓ n | ω0 n = 0, 1, 2, ... (31)

(where Qz is the vertical tune) which means that if ωkick = ωres the vertical
beam oscillations will be excited to a point where the beam is lost. The
same can be shown for the horizontal betatron oscillations (Qx) as well as
for synchrotron motion (Qs). Such resonances must be avoided during the
whole experiment.

The motion of the spin vector can be described in a very similar way: A
solution to the Thomas-BMT equation (equation 11) is given by (neglecting
phase)5:

5Keep in mind that in equation 11 the spin vector ~S(s) was a function of the traveled

distance of the electron whereas here it is a function of time ~S(t) which is more practical
since a time-dependent field F (t) has been taken into account. Notice also that equation
12 presented solutions for the spin motion in the electron’s rest frame; the solutions here
are in the lab frame which is the frame of interest when describing spin motion under
influence of a kicker magnet field.
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Sy(t) = A sin(Ωt) where A =
√

1− Sz2 � 1 (32)

Now the spin precession is excited with the kicker magnet:

d2Sy
dt2

+ Ω2Sy = F (t) (33)

Taking into account again that F (t) is not a pure cosine, but a cosine mul-
tiplied with a step function, one derives:

Sy(t) =
∞∑

n=0

An cos [2π(ωkick ± nω0)] (34)

An ∝
1

Ω2 − (2πωkick ± n2πω0)2
(35)

Keeping in mind equations 11, 12 and 14 an recalling that

Ω = 2πω0(aγ + 1) (36)

the resonant depolarizing frequencies are derived:

ωdepol =| aγ + 1∓ n | ω0 n = 0, 1, 2, ... (37)

This shows that the resonant depolarizer frequencies are sidebands of the
revolution frequency. The case where n = aγ is called the integer spin
tune. If the kicker frequency is in resonance with the depolarizing frequency
(ωkick = ωdepol) it is possible to tilt the mean spin vector of the electrons in
the beam into the horizontal plane; in presence of spin diffusion effects (with
a decoherence time much smaller than τdepol) this depolarizes the beam.

2.7 A Polarization Model for the SLS Storage Ring

In chapter 2.2 it was shown that due to synchrotron radiation an electron
beam in a storage ring will polarize with a certain characteristic time constant
τ0 to the maximum level of polarization PST . In chapter 2.4 depolarizing
mechanisms were introduced. It was also mentioned that field errors had less
influence on the level of polarization in low-energy machines like SLS, thus
high polarization levels should be achievable at SLS. In this section a simple
model for the equilibrium polarization build-up at SLS will be discussed.
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Polarization build-up at SLS is described by equation 5:

Ppol(t) = PST

(
1− exp

(
− t

τp

))
(38)

with τp = 1865 s at the nominal energy of 2.4 GeV. Depolarizing effects are
expected to show an exponential decay of the polarization:

Pdepol(t) = PST exp
(
− t

τd

)
(39)

The equilibrium state between the polarization build-up due to spin-flip ra-
diation and depolarizing effects due to photon emission is described again by
an exponential build-up:

Ptot(t) = Peff

(
1− exp

(
− t

τeff

))
(40)

where

Peff = PST
τd

τp + τd
and

1

τeff
=

1

τp
+

1

τd
(41)

Expecting an equilibrium polarization level of 80% at SLS one can derive
the characteristic depolarization time as well as the equilibrium polariza-
tion build-up time from equation 41. In the example shown in figure 5 the
following values have been used:

τp = 1865 s

Peff ≈ 80%

=⇒ τd ≈ 12032 s

=⇒ τeff ≈ 1615 s

It is important to note that depolarizing effects have a very long characteristic
time τd compared to polarization build-up τp (in this situation) leading to
high polarization values.
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Figure 5: A model for the effective polarization build-up in the SLS storage
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3 Experimental Approach and Equipment

3.1 Touschek Scattering and Polarization

Until now polarization of the electron beam as well as depolarization have
been mentioned. Measuring absolute polarization however is not a simple task
and requires dedicated complex hardware (Compton Polarimeter, dedicated
beam line, etc.) which currently do not exist at SLS. But it is actually not
necessary to measure absolute polarization in order to obtain the degree of
equilibrium polarization. If a Touschek limited beam is used the degree of
equilibrium polarization can be determined by observing the rate of Touschek
scattering because Touschek scattering is polarization-dependent.

The three main effects which contribute to scattering of beam electrons in
a storage ring are: Touschek Scattering (τts), elastic scattering (τel) and
bremsstrahlung (τbs); these effects determine beam lifetime in the SLS storage
ring [14]:

1

τ
=

1

τts
+

1

τel
+

1

τbs
(42)

Recent experiments [14] have shown τbs to be so large, that it has no sig-
nificant influence on the total lifetime τ . For single bunch beam current of
0.5 − 1.5 mA the dominant effect [14] is Touschek scattering; elastic scat-
tering depends inversely on gas pressure, which in turn depends linearly on
beam current. Therefore we chose to use a filling pattern of 90 bunches at
about 100 mA which guarantees for Touschek limitation of the beam where:

1

τts
� 1

τel
+

1

τbs
(43)

Touschek scattering [15] [16] has a polarization dependent cross section:

σts = f1(re, β,Θ)− P 2 · f2(re, β,Θ,Φ) (44)

where fi are functions of the electron radius re, the relativistic velocity β and
the scattering angles Θ and Φ. Increasing beam polarization P leads to a
smaller Touschek cross section and therefore to less losses of beam particles.
On the other hand, a sudden decrease in beam polarization (due to the
depolarizing resonance for example) will lead to a rise of Touschek scattering
losses. Therefore the change of the Touschek loss rates of the beam can be
correlated with changes in the polarization level.
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Furthermore, measurement of the equilibrium polarization build-up time will
allow determination of the equilibrium degree of polarization nevertheless:
Recall equation 40 describing this build-up process. If we observe the expo-
nential build-up the remaining unknown (τp can be calculated, see equation
4) τd can be fitted. With equation 41 the equilibrium polarization level Peff
can be obtained6.

3.2 Measurands

The remaining obstacle is measuring the rate of Touschek scattering. There
are three obvious ways to do this: Measure the current of the beam (its
derivative is the loss rate), use scintillation monitors which register a pair
of Touschek scattered electrons outside of the vacuum chamber or measure
the beam intensity by analyzing the signal from the beam position monitors
(BPMs). The former methods were used in our experiments. The beam
current and lifetime were used to monitor the change of Touschek losses
and the scintillation counters were used to monitor loss rates of Touschek
scattered electron pairs.

3.2.1 Beam Current and Lifetime

Beam current and beam lifetime can both be monitored through the SLS
control system. When injection into the storage ring stops the beam current
slowly decays following an exponential function with a characteristic decay
time:

I = I0 exp(− t
τ

) and İ = −I 1

τ
(45)

The beam lifetime is the inverse negative of the current derivative −İ−1

and therefore the product of beam lifetime and beam current is the decay
constant:

τ = −İ−1 · I (46)

After stopping the injection one would expect a gradual decay of the current
and respectively an increase in lifetime. Instead an exponential increase of

6Note that this is only possible for the equilibrium level. Using this method it is
not possible to measure the degree of polarization at any given time, i.e. outside of the
equilibrium state. This would still require a polarimeter.
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Figure 6: The polarization build-up after injection is clearly seen in this
plot. Injection stopped shortly before timestamp 12000. The fit is depicted

by the dashed line. The build-up time constant is τts = (1261± 12)s
corresponding to an equilibrium polarization degree Peff = (62.5± 0.6)%.

this product is observed due to the fact that Touschek scattering decreases
with increasing polarization (figure 6). Recall that the characteristic decay
time of the beam current in the SLS storage ring is given by:

1

τ
=

1

τts
+

1

τel
(47)

If the current is known τel can be calculated [14] and thus we derive τts:

τts =
τ · τel
τel − τ

(48)

It was observed that after waiting for two to three polarization build-up times
to pass, τts reaches a constant value, precisely as expected from theory.

After the build-up of τts has been observed and the stored beam has reached
equilibrium state τts stays constant. This changes when the beam is excited
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Figure 7: The beam is excited shortly at the depolarizing resonance at
timestamp 7910 and again later at timestamp 8110 leading to sudden drops

in the product of beam current and lifetime.

at the spin tune: The effective polarization is reduced and thus the Touschek
scattering cross section rises leading to a decrease of beam lifetime (figure 7).

3.2.2 Loss Monitors

When the Touschek scattering rate suddenly rises because of resonant depo-
larization, an increase of scattered electron pairs should be detected outside
the vacuum chamber. At the SLS storage ring a pair of scintillators was
already installed downstream of the in-vacuum undulator U24. The closed
gap of this undulator reduces the aperture to 8 mm in the straight section
which leads to an increase of the signal intensity of the loss monitors. When
the scintillators registered an event in coincidence we assume this a Touschek
scattering event. During stable beam conditions this loss signal is constant.
As soon as the beam is excited at the resonant depolarizing frequency the
signal jumps to higher values. This is a very useful method to distinguish
jitter of the lifetime and current readings (see figures 6 and 7) from “real”
peaks. An example is given in figure 8 where the loss monitor jump clearly
identifies the sudden increase of Touschek loss rates.
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Figure 8: Excitation of the beam at the resonant depolarizing frequency
leading to a jump in the rate of Touschek scattered particles as seen by

scintillation monitors.

3.3 Finding the Depolarizing Resonance

The high precision of this resonant depolarization experiment is based on
the fact that the energy measurement is actually a frequency measurement.
Frequency measurements are simple, quick and very precise. Recall equation
14 describing the spin tune:

ν = aγ = a
E

mec2
(49)

The design energy of the SLS storage ring is 2.4 GeV which leads to an
estimated spin tune of ν = 5.4465. The resonant depolarizing frequency is
the fractional part of the spin tune multiplied with the revolution frequency:

ωdepol = (ν − bνc) · ω0 ≈ 465.1 kHz (50)

So we expect to find the resonant depolarizing frequency around 465 kHz.
Form this one is able to calculate the energy:

E = mec
2 · 1

a
· ν = mec

2 · 1

a
·
(
ωdepol
ω0

+ 5
)

(51)
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The resonance is found by means of sweeping over a frequency range around
the expected value determining the precise frequency at which the beam gets
depolarized.

This is done by using a signal generator which feeds a sine wave to the input
of the kicker magnet amplifier. The frequency of this sine wave is swept over
a pre-defined interval with a certain sweep velocity or dwell (the time span in
which a sine wave of a certain frequency is fed to the amplifier). For example
we could start at 400 kHz and sweep until we reach 500 kHz with a step size
of 1 Hz and a dwell of 1 s meaning that upon triggering the sweep the signal
generator will feed a sine wave with 400 kHz frequency to the amplifier and
will raise this value linearly by one Hertz per second until it reaches 500 kHz7.
Observing when the resonant depolarization of the beam occurs the actual
frequency is recorded and the beam energy calculated according to equation
51.

Since we are using very low frequencies (the signal generator supports fre-
quencies up to 1.1 Ghz) and we only make use of large dwells (the signal gen-
erator is capable of ms dwells) the generator is very precise; measurements
of the generator output on an oscilloscope showed that the generator fed
exactly the required frequency to the amplifier with a precision much higher
than 1 Hz

s
. It is important to note here that the uncertainty of the frequency

generator’s output frequency has a negligible influence on the uncertainty of
this measurement because the frequency uncertainty is magnitudes smaller
than other effects; these will be discussed later.

3.4 Resonance Mirror

In the last chapter we mentioned the fact that only the fractional part of the
spin tune is measurable. Similar to the fact that a traveler going 3π

2
around a

circle ends at the same spot his fellow does when going around π
2

in the other
direction, we can’t be a priori sure when observing a “resonant” frequency
that this isn’t just the mirror frequency of the resonance. According to the
Nyquist Theorem we can only measure how much below or above we are from
the half-integer, but not on which side or in mathematical terms, does the

7Note that the mentioned sweep would require almost 28 hours while a machine shift at
SLS is only 8 hours! Therefore we normally first swept at high speeds over a large interval;
when a resonance is found the sweeping interval is narrowed and the sweep speed lowered
to increase resolution. This is an iterative and more efficient procedure but still a very
time consuming task. Once we depolarized the beam at the resonant frequency we had to
wait for polarization to build up in the beam again before we could start the next sweep.
Remember that the characteristic polarization time at SLS is more than a half hour!
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measured frequency correspond to ν − bνc or ν + 1− bνc. For example the
frequency 500 kHz corresponds to a beam energy of 2.372 GeV but also to
the mirror energy at 2.475 GeV; this ambiguity is resolved in the following
way:

The energy of the beam can be slightly varied using a different RF main
frequency. At SLS the RF main frequency is 500 MHz. Beam energy and
RF main frequency are related by the momentum compaction factor α:

∆E

E
= − 1

α

∆νRF
νRF

(52)

Therefore a change in the RF main frequency will lead to a change in beam
energy. If the RF main frequency is changed to a lower value, the beam energy
will rise. If the resonant frequency increases as well it is the “real” resonance;
if however the resonant frequency decreases, it is the mirror resonance and
vice-versa. Thus this procedure always requires a second measurement of the
resonant frequency.

3.5 Sidebands

Energy oscillations of electrons in the beam (synchrotron oscillations) lead
to a modulation of the spin tune and hence to sidebands (Bessel bands)
around the main resonance frequency. These sidebands are equally distanced
from the resonant frequency by multiples of the synchrotron tune Qs. To
distinguish the main resonance from its sidebands Qs is varied.

The synchrotron tune Qs and the RF voltage are related by [17]:

Qs
2 ∝ VRF (53)

Sidebands are identified by a change of the RF voltage which results in a
change of synchrotron tune thus changing the distance between resonance
dip and its sidebands noticeably. If the sweep is repeated with changed RF
voltage one dip stays unchanged and the others are shifted. The unshifted
resonance is the main resonance, the shifted resonances are sidebands.

25



4 Development of Experimental Tools

4.1 Data Acquisition and Real-Time Analysis

The quantities needed to carry out measurements (equations 45, 46) con-
sist of the beam current and the beam lifetime together with a time stamp
belonging to each of these values. The SLS control system provides such in-
formation by feeding these quantities to EPICS channels which can be read
out and remotely archived. It is however necessary to collect this data, save
it and evaluate it in real-time, in order to adapt the experimental procedure
to current circumstances as well as to get experimental results during data
acquisition.

An online tool has been provided which reads the data from the EPICS chan-
nels, transforms it to an appropriate format and units and then calculates
other relevant properties. An example for such a calculation is determining
the fraction of beam loss due to elastic gas scattering opposed to the loss
through Touschek Scattering at a certain vacuum pressure. This ratio could
be derived from the beam current. Recall equation 48:

τts =
τ · τel
τel − τ

(54)

and according to [14]

τel [h] = (112± 10) · (3.2± 0.4) [pbar · s]
P [pbar]

(55)

with the gas pressure related linearly to the current8:

P [pbar] = 5.11 [pbar] + 0.01566 [pbar ·mA−1] · Ibeam [mA] (56)

Once the necessary values are computed, they are written to a data file for
off-line analysis and backup purposes. After a sufficient amount of data
has been obtained, certain values of interest can be determined by fitting
theoretical models to data. An example of this procedure is the calculation
of the current polarization level which requires a polarization build-up to be
fitted as depicted in figure 6:

8The mentioned linearity is valid in the area of 50-150 mA beam current where our
experiments take place, see [14].
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a + b
[
1− exp

(
−x− c

d

)]
(57)

The important fit parameter is d, the characteristic equilibrium build-up
time. In the fit seen in figure 6 d = 1261± 12 which (according to equation
41) leads to τd = (3894± 114) s and therefore to Peff = (62.5± 0.6) %.

All these steps were implemented in a single program which allowed a com-
plete online data analysis of polarization build-up in real-time. The actual
program code is not complicated, but proved to be a very powerful tool
during data acquisition.

4.2 Frequency Sweeping

First measurements of the resonant depolarization frequency were done by
hand, i.e. the signal generator fed a sine wave signal to the amplifier of a
kicker magnet whereby the parameters (sweep range, sweep velocity, gain,
etc.) of the signal generator had to be set at the machine manually and
the crucial time values (determining the current sweep frequency) had to be
noted as well.

In order to get around this tedious and not very accurate method a program
has been introduced which allows to control the experiment from the control
room with much higher accuracy. The program queries the necessary pa-
rameters, writes them to EPICS channels (which can be logged) and, upon
start, sends a trigger signal to the signal generator which, on receiving this
signal, begins the sweeping of a previously defined range. While sweeping
the program writes the actual sweep frequency to an EPICS channel which is
written to the same data output files as the measured values (beam current,
lifetime, etc.) and therefore enables precise linking between measured values
and current experimental parameters.

An example of this procedure is the determination of the resonant depolar-
izing frequency. When a dip in lifetime is observed, the data is queried for
the sweep frequency set on the signal generator during depolarization. This
allows precise identification of resonant frequencies as well as measurement
of the resonance width. Figure 9 shows an example for the correlation of
sweep frequency and depolarization of the beam. When the dip in lifetime
occurs (second curve from top) or the rise of losses starts (bottom curve)
the current sweep frequency is identified to be the depolarizing frequency.
Because the width of this dip (for more detail see chapter 5) is much wider
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Figure 9: The experiment as seen from the SLS control system. Shortly
before 6:05 the resonant depolarization frequency is reached. The top curve
shows the current excitation frequency during the sweep allowing the begin

of the dip to be localized at 581,25 kHz.

than the precision of the sweep frequency, the width of the depolarization
dip is the dominating contribution to the resonance uncertainty.

Figure 10 shows the expert panel (provided by the SLS controls group) for
setting frequency generator values within the SLS control system.

4.3 Adjusting the RF

Once a dip in lifetime has been observed the next step is to make sure that the
dip is the “real” depolarizing resonance and not a sideband or a mirror (see
chapters 3.4 and 3.5). Identifying the mirror is simple, because the RF main
frequency can easily be changed as mentioned earlier; distinguishing the main
resonance from its sidebands however is a bit more difficult because of the fact
that the voltages of all four RF stations should be changed synchronously
(and by well defined means) by a small value in order to change the total RF
voltage by as little as necessary. The RF voltage of each RF station can be
changed through the SLS control system; normally this is done by hand, one
station after the other, but such a procedure is by no means synchronous.

Therefore another computer program was introduced which accomplishes the
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Figure 10: The panel to set sweep frequency parameters from the SLS
control room.
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following tasks: In a first step it acquires the current set voltages of each RF
station by querying the corresponding EPICS channels. It then calculates
new values depending on a common scaling factor fed to the program as
parameter. These new values are then written to the appropriate EPICS
channels simultaneously, thus allowing shifts in total RF voltage by well
defined means.
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5 Measurement Results

In this chapter measurement results will be presented. On nine dedicated
shifts polarization experiments have been performed resulting in 23 runs.
Not all runs resulted in reasonable data. It was observed that very stable
beam conditions were needed in order to guarantee good measurements and
that small perturbations (like the closing of a gap by a few mm which leads
to additional aperture and thus to a decrease in lifetime) could render a run
useless. In the first section results of the polarization build-up measurements
are presented, while the second section deals with the energy calibration
measurements.

5.1 Beam Polarization Level

The equilibrium beam polarization level was measured as described in chapter
3.2. 90 buckets were filled with a current of ≈ 100 mA. Injection was turned
off and an orbit correction was performed to assure that the beam was on the
reference orbit. After this correction tune and injection kickers were turned
off and the current decay was observed for 30 min to 1 h. As soon as the
product of Touschek lifetime and beam current started to saturate the fit of
the build-up converged nicely and fit parameters could be derived.

In order to see polarization build-up the tunes first had to be adjusted;
νx = .42 was much too close to the expected spin tune ν = .4465 so that the
beam was expected to polarize only to low levels. Indeed, the polarization
build-up was not noticed in a first experiment at this tune setting. The tunes
were set back to “old” values used before injection optimization in December.
νx = .42→ .38 and νy = .19→ .16. As soon as these new tune settings were
applied polarization build-up was observed. Figure 11 shows an example of
build-up to (60.1±0.3)%. The two dips in Figure 11 are orbit corrections that
were performed during the build-up measurement and led to perturbations
of the beam.

In order to reach higher values of polarization another run was performed
with a differently corrected orbit and with vertical corrector settings for a
flat orbit. This build-up is shown in figure 12; the fit shows polarization
build-up of (86.7± 0.3)%.

The build-up measurements show that equilibrium polarization levels close to
the Sokolov-Ternov level can be reached. This is in good agreement with the
assumption that the depolarizing effects in the SLS storage ring are small.
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Figure 11: Polarization build-up and fit (reference orbit with temperature
and insertion device bumps). The fit parameter for the characteristic

build-up time is 1213± 6 corresponding to an equilibrium polarization of
roughly 60%. The two dips originate from perturbations to the beam induced

by orbit corrections.
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Figure 12: Polarization build-up and fit (flat orbit). The fit parameter for
the characteristic build-up time is 1751± 6 corresponding to an equilibrium

polarization of roughly 87%.
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The verification of high polarization levels in the SLS storage ring is crucial
for the following energy calibration measurements. Only high polarization
levels of the beam allow noticeable depolarization which leads to significant
changes in the Touschek scattering rate and therefore to noticeable signals.
For the energy calibration measurements a decent polarization build-up al-
ways has to be observed in advance. Once such a build-up has occurred the
outcome of the depolarization measurement becomes significant for energy
measurement.

5.2 Beam Energy

In order to perform the energy calibration measurement a decent polarization
build-up had to be observed as mentioned in the last chapter. Afterwards an
orbit correction was done to ensure that the orbit had zero deviation from
the design orbit thus the measurement would reveal the actual beam energy
not including possible distortion due to corrector settings modifying the inte-
grated bending field. Then the sweep could start within the predefined range
and dwell settings. Beam current, lifetime, loss monitor reading and actual
sweep frequency were monitored as shown in figure 9.

In a first measurement run we performed a frequency sweep from 2.38 GeV
(417.833 kHz) to 2.4 GeV (465.112 kHz) with a dwell of 10 Hz/s and a kicker
power of 135 W. The product of beam current and lifetime was flat, thus
showing that the resonant frequency had not been reached in this sweep. We
decided to start another sweep above 2.4 GeV.

In the second measurement the sweep went from 2.4 GeV (465.112 kHz) to
2.42 GeV (512.391 kHz) with the same power and dwell settings. The result
of this run is shown in figure 13. Two effects were observed: At time stamp
≈ 62800 s a dip in the product of beam current and lifetime is noticed due
to a lifetime drop by ≈ 5%. This dip is located at (490 ± 1) kHz which
corresponds to (2.4105 ± 0.0005) GeV, but due to the mirror uncertainty
(as already mentioned in chapter 3.4), could also be (2.4366± 0.0005) GeV.
In a second measurement this dip was reproduced, but due to a vacuum
interlock the identification of the mirror had to be postponed. The second
important effect seen in figure 13 are the three peaks; the central peak is
a (not yet identified) orbital resonance with two sidebands. The sidebands
are located at ±6.4 kHz from the center resonance which corresponds to a
synchrotron tune of Qs ' 6.12 · 10−3. An interesting fact is that to the right
of the the depolarizing dip the plotted curve isn’t flat as one would expect
from the resonance crossing formula of Froissart and Stora [18]: After the
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Figure 13: First sweep around a depolarizing resonance. The resonance is
located at 62800 s whereas the three peaks come from an orbital resonance;

a central resonance and its first order sidebands. The distance between
center resonance and sidebands is the synchrotron tune.

resonance dip a new build-up is observed with the same exponential build-
up characteristics as observed in equilibrium polarization level measurements
(see also figure 19).

In a third run we tried to reproduce the dip above the half number (the
half number spin tune corresponds to 520.833 kHz). The sweep went from
523 kHz to 591 kHz with a dwell of 18 Hz/s and 250 W kicker power. The
result is shown in figure 14. A clear dip shows that the depolarizing resonance
lies at (580.0±0.2) kHz corresponding to (2.4486±0.0001) GeV or the mirror
at (2.3985± 0.0001) GeV. This dip is confirmed in the peak of loss monitor
coincidence signals as depicted in figure 15. It was however observed at the
end of the sweep that the mean orbit had drifted, thus causing the energy to
change. Therefore the measurement had to be repeated.

In a fourth run the last measurement was verified: In a fast sweep (dwell was
30 Hz/s) from 523 kHz to 607 kHz a pattern of dips was detected starting
at (547.0± 0.5) kHz. This is shown in figure 16. A second dip is at (552.9±
0.5) kHz and a third at (558.6 ± 0.5) kHz; afterwards the orbit resonance
leads to the three peaks already seen in earlier experiments - they are again
separated by the synchrotron tune. Note that the orbit resonance peaks are
to the right of the depolarizing resonance compared to figure 13 where they
were to the left. This has to do with the fact that we are now sweeping above
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Figure 14: The depolarizing resonance at 580kHz.
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Figure 15: The loss monitor coincidence signal rising during resonant
depolarization at 580kHz.

35



1.04e+06

1.06e+06

1.08e+06

1.1e+06

1.12e+06

1.14e+06

1.16e+06

1.18e+06

1.2e+06

1.22e+06

1.24e+06

530000 540000 550000 560000 570000 580000 590000 600000

C
ur

re
nt

*T
ou

sc
he

k_
Li

fe
tim

e 
[m

A
*s

]

Kicker Frequency [Hz]

Data

Figure 16: Dip pattern of a fast sweep.

the half-integer so our view is “mirrored”.

The three dips correspond to the energies (2.434 ± 0.002) GeV (mirror at
(2.413± 0.002) GeV), (2.437± 0.002) GeV (mirror at (2.410± 0.002) GeV)
and (2.440±0.002) GeV (mirror at (2.408±0.002) GeV). The question arises
which of these dips is the resonance and which are sidebands as well as is
this the resonance or just its mirror? To answer these questions two identical
runs were started differing only by a changed RF voltage. Prior to the second
sweep the RF voltages were increased from 1752.1 kV to 1944.8 kV (+11%).
According to equation 53 this should lead to a change of the synchrotron
tune Qs by more than a percent which can be observed easily. The patterns
of the two sweeps are compared in figure 17.

The synchrotron tune increased by ≈ 5% and one dip could be identified
to have not moved within the precision of measurement. Another dip (to
the left of the resonance) was shifted by 5% to lower frequencies while a dip
above the resonance was shifted to higher frequencies, precisely as predicted
by theory. The resonance is located at (550.4 ± 0.6) kHz corresponding to
(2.4361± 0.00024) GeV (mirror at (2.4110± 0.00024) GeV).

A magnified view of the resonance dip is given in figure 18. Notice the fit
curve from the upper level (polarized beam) to the lower level (partially de-
polarized beam) according to the Froissart-Stora equation [18]. Froissart and
Stora described the curve that would be observed when crossing a depolar-
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Figure 17: Dip patterns of two sweeps differing by a slightly changed RF
voltage.
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Figure 18: Dip of the resonance with fit according to the Froissart-Stora
equation for resonance-crossing.
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Figure 19: Slow polarization build-up process after having crossed the
depolarizing resonance.

izing resonance and claimed it to be:

Ppol
Pdepol

∝ 2 exp(−πε
2

2α
)− 1 (58)

where ε is the strength of the resonance and α the resonance crossing speed.
The slow build-up after crossing the resonance is due to the fact that the
kicker magnet has already depolarized a large fraction of the beam while
being in the area of the resonance. When the sweep reaches values outside
of the resonance a slow polarization build-up starts again thus leading to a
almost flat curve. A very nice example for this build-up process after crossing
the depolarizing resonance is shown in figure 19.

The exact energy calibration is obtained with the Froissart-Stora fit: The
energy is the minimum of the Froissart-Stora dip minus half of the FWHM of
the Froissart-Stora fit. The uncertainty of the dip is independent of the signal
generator driving the sweep as already mentioned in chapter 3.3. Therefore
we specify the energy uncertainty with the half-FWHM of the Froissart-Stora
fit. Applied to the data and fit seen in figure 18 this leads to an energy of
(2.4361±0.00024) GeV (mirror at (2.411±0.00024) GeV) where the 240 keV
uncertainty correspond to the 480 keV FWHM of the Froissart-Stora fit. The
distinction between resonance and mirror could not be done, because the
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Figure 20: Froissart-Stora fit of the depolarizing resonance.

beam was dumped due to a shutter interlock shortly before the end of shift.

A week later this run was repeated but we planned to reduce dwell and kicker
strength in order to receive a more narrow dip, thus increasing certainty of
the energy calibration. After observing build-up and correcting the orbit
a sweep from 536 kHz to 579 kHz was carried out. When the orbit had
been checked to have no deviation form the flat orbit we noted the RF main
frequency to be at νRF = 499654310 Hz. The resonance dip was found at
(2.4361±0.00018) GeV (mirror at: (2.411±0.00018) GeV) as shown in figure
20.

In a second step the RF main frequency was changed by +1000 Hz to νRF =
499655310 Hz. Now the orbit had larger mean values in the arcs in agreement
with theory. According to the orbit correction program of the SLS control
system (see equation 52) ∆νRF = +1 kHz leads to an energy deviation of
∆E ≈ −7 MeV. But actually the reproduced dip was now found 7 MeV above
the original 2.4361 GeV. This proves that 2.4361 GeV is the actual resonance
and not the mirror; the mirror of this resonance would be seen if sweeping
around the mirror frequency of 491 kHz. The reason for this conclusion lies
in the fact that 2.4361 GeV already lies above the half-integer spin tune
(520.8 kHz or 2.4236 GeV), so in the sweeps around this frequency we have
been looking at mirror frequencies. If the energy belonging to the shifted RF
voltage lies higher even though it should be lower than the energy belonging
to the unshifted RF voltage, we are looking at the mirror of a mirror, i.e.
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Figure 21: The depolarizing resonance dip corresponding to a beam energy
of (2.4361± 0.00018) GeV.

we are looking at the actual resonance! Therefore we will from now on link
all resonances in sweeps from frequencies above the half-integer to energies
above 2.4236 GeV. Figure 21 shows the result of these two runs.

In the last run we planned to reproduce the results of the previous runs but
with higher accuracy. We therefore lower the kicker power from 250 W to
50 W and set the dwell to only 2 Hz/s. We were able to reproduce the
resonance but at a much higher energy of (2.4490± 0.00011) GeV as shown
in figure 22.

The reason for this sudden “energy drift” however has nothing to do with the
actual beam energy as we were able to show later. During the measurement
the only peculiarity observed was an exceptionally low RF main frequency
of 499653209 Hz; this value was about 1 kHz lower than in previous runs.
After carefully studying the events of this night shift it was recognized that
the orbit was flat and centered, but that there was a mean corrector setting
leading to an orbit which was too far inside of the ring with respect to the
design center. Because there was a systematic shift to smaller radii, the RF
main frequency was lowered by the orbit correction to smaller values, thus
increasing the actual beam energy. It is important to notice that not only
does the beam have to be on the reference orbit for the energy calibration to
render decent values, but also the correctors pattern is not allowed to have
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Figure 22: The depolarizing resonance dip corresponding to a beam energy
of (2.4490± 0.00011) GeV.

a mean value in the dispersive regions (in the arcs). If the mean corrector
value is zero the orbit is centered with respect to the design orbit and en-
ergy calibration measurements lead to valid results. In other cases the orbit
correction will start shifting the RF main frequency and thus will shift the
beam energy.

Notice however that the uncertainty of the last run is already as low as ∆E
E

=
4.5 · 10−5 meaning that the precision of the energy calibration measurement
can be increased with the lower kicker power and dwell settings as described
above. Further runs are expected to reach a precision of ∆E

E
= 10−5!

Finally, we have measured the energy of the SLS storage ring to be (2.4361±
0.00018) GeV and its stability over a couple of weeks is constant within ∆E

E
=

4.5 · 10−5. This is in good agreement with independent energy calibration
measurements performed by experimenters in one of the SLS beam lines [19];
by looking at characteristic line spectra behind undulator U24 (gap at 8 mm)
the energy was calibrated at (2.44±0.02) GeV which is in excellent agreement
to the presented measurements.
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6 Outlook

The carried out experiments have allowed to measure the SLS storage ring
beam energy with very high precision. They have however also shown how
tedious and time consuming this method is. It is also very sensitive to per-
turbations of all kind including gap size changes, tune shifts and orbit drifts.
Therefore this method is not a priori suitable for day-to-day parasitic mea-
surements in order to monitor the current beam energy.

Nevertheless it is possible that in the future when SLS operates without
frequent shutdown periods and therefore acquires an immanent stability this
measurement could be carried out in a short time frame between user shifts
allowing an independent check of the beam energy. Such measurements could
be used to perform studies on beam stability during typical beam lifetimes
and beam drifts during longer run periods. In the long term these studies
could help better understanding properties of the SLS storage ring.

Today the high precision of the energy calibration method already allows
for a more precise calculation of the momentum compaction factor and its
non-linearity (equation 52). Up to now all calculations of this non-linearity
were restricted by the precision of the beam energy. In addition the per-
formed energy measurements have shown that the maximum precision has
not yet been reached. By lowering the kicker strength and the sweep dwell
the depolarizing resonance can be made sharper, thus leading to less uncer-
tainty of the energy calibration. It is expected that future applications of
this measurement method at SLS will lead to knowledge of beam energy with
a precision of ∆E

E
= 10−5. Such uncertainties are much smaller than those

obtained by measurement of the dipole magnet fields with Hall probes.

Another suggested consequence of these energy measurements is to investi-
gate if the injection from booster to storage ring can be enhanced by matching
the energies of the two rings. It has been mentioned that possibly a mismatch
between booster and storage ring energy is limiting the injection rates. If the
booster injects at design energy and the stored beam in the storage ring has
an energy that lies over one percent higher, this could in fact cause injection
efficiency to suffer. Investigation of this problem will follow soon.

Apart from the suggested experiments to follow this calibration the original
problem has to be solved as well: Why is the beam energy in the SLS storage
ring so much higher than the design energy? The currents measured during
dipole field measurements are in agreement with the magnet calibration.
This leads to the presumption that the dipole magnet measurements have
rendered wrong calibration constants between applied current and generated
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magnetic field for a given hysteresis cycle. As a consequence the dipole fields
will be measured again with Hall probes in the near future.
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