Introduction to Particle Accelerator Physics Tutorial 4 - Problems

1. Quadrupole Errors and Tune Shifts

In the lecture a quadrupole focussing error was introduced into Hill's equation by replacing the focussing function K(s) with $K(s) + \Delta k(s)$. It was then proposed that the error in the focussing function could be represented as a gradient error $\Delta(kl)$ leading to a tune shift $\Delta Q = \frac{1}{4\pi}\beta_0\Delta(kl)$. Assume that the tune shift is small with respect to the tune and prove this statement.

2. Momentum Compaction and Transition Energy

Dispersion leads to path length changes for off-momentum particles. This is characterized by the momentum compaction factor α_c defined in the lecture. Considering that timing is very important in an accelerator, can path length changes be related to a change of the revolution period? Or in mathematical terms, how does $\frac{\Delta T}{T}$ depend on $\frac{\Delta p}{p}$? Is it possible to build an accelerator where $\Delta T = 0$ regardless of Δp ?

3. Quadrupole Scan for Emittance Measurement

Assume a screen monitor downstream of a tunable quadrupole magnet. Show how measuring the beam size σ_x^2 as a function of quadrupole strength can be used as an emittance measurement.