1. Quadrupole Errors and Tune Shifts
In the lecture a quadrupole focussing error was introduced into Hill’s equation by replacing the focussing function $K(s)$ with $K(s) + \Delta k(s)$. It was then proposed that the error in the focussing function could be represented as a gradient error $\Delta(kl)$ leading to a tune shift $\Delta Q = \frac{1}{4\pi^2} \beta_0 \Delta(kl)$. Assume that the tune shift is small with respect to the tune and prove this statement.

2. Momentum Compaction and Transition Energy
Dispersion leads to path length changes for off-momentum particles. This is characterized by the momentum compaction factor α_c defined in the lecture. Considering that timing is very important in an accelerator, can path length changes be related to a change of the revolution period? Or in mathematical terms, how does ΔT depend on Δp? Is it possible to build an accelerator where $\Delta T = 0$ regardless of Δp?

3. Quadrupole Scan for Emittance Measurement
Assume a screen monitor downstream of a tunable quadrupole magnet. Show how measuring the beam size σ_x^2 as a function of quadrupole strength can be used as an emittance measurement.

Assistant: Simon C. Leemann, simon.leemann@psi.ch, 056/310 3343