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Introduction to Particle Accelerator Physics

Tutorial 5 - Solutions

1. Apertures, Dispersion, and Acceptance
a) Recall from the lecture the definition of the vertical acceptance (without dispersion)

Ay = min
(

ay(s)2

βy(s)

)
where ay(s) is the vertical acceptance. In this case the vertical acceptance is constant
around the ring so the minimum will be reached when the vertical beta function reaches
a maximum:

Ay = min
(

ay(s)2

βy(s)

)
=

(h/2)2

βy,max
=

(15 mm)2

25 m/rad
= 9mm mrad

b) Since we know there is a vertical focus at the center of the straight (symmetry point), we
can refer to the result of problem 5 of tutorial 2 for the beta function around a symmetry
point:

βy(s) = βy,0 +
s2

βy,0

From this we gather that the beam will be the largest at the edges of the undulator and
therefore this is where we exepct the acceptance limitation:

βy,edge = βy,0 +
(L/2)2

βy,0
= 1m/rad +

(2 m)2

1 m/rad
= 5m/rad

The vertical aperture of the undulator is one half of the gap height which leads to

Ay = min
(

ay(s)2

βy(s)

)
=

(gu/2)2

βy,edge
=

(3 mm)2

5 m/rad
= 1.8 mm mrad

So the installation of the narrow-gap undulator has reduced the vertical acceptance by a
factor 5!

c) Remember the definition of the betatron phase advance:

φ(0, l) =
∫ l

0

ds

β(s)

This allows us to calculate the total phase advance for the undulator:

φx,y =
∫ +L/2

−L/2

1
βx,y(s)

ds



=
∫ +L/2

−L/2

1
βx,y,0 + s2

βx,y,0

ds

= βx,y,0

∫ +L/2

−L/2

1
β2

x,y,0 + s2
ds

=
[
arctan

s

βx,y,0

]s=+L/2

s=−L/2

= 2 arctan
L/2
βx,y,0

(1)

So we can calculate the total phase advance in x and y:

φx = 2arctan
L/2
βx,0

= 2arctan
2 m

9 m/rad
≈ 25◦

φy = 2arctan
L/2
βy,0

= 2arctan
2 m

1 m/rad
≈ 127◦

d)

Ay = min
(

ay(s)2

βy(s)

)
= min

(
(gu/2)2

βy(s)

)
=

(gu/2)2

β̂y

where β̂y is the maximum of the beta function at the edge of the undulator. We can
calculate the optimum β̂y,0 which minimizes the beta function at the undulator edge:

βy,edge = βy,0 +
(L/2)2

βy,0

dβy,edge

dβy,0
= 1− (L/2)2

β2
y,0

0 !=
dβy,edge

dβy,0
= 1− (L/2)2

β̂2
y,0

Which we then further simplify:
β̂2

y,0 = (L/2)2

=⇒ β̂y,0 = ±L/2

For this optimum β̂y,0 the beta function at the edges of the undulator is minimized:

β̂y = β̂y,0 +
(L/2)2

β̂y,0

= 2m/rad +
(2 m)2

2 m/rad
= 4m/rad

And thus the acceptance of the undulator is maximized:

Ây =
(gu/2)2

β̂y

=
(3 mm)2

4 m/rad
= 2.25 mm mrad

So by properly choosing the parameter βy,0, we gain 25% in acceptance!



e) Since we require the bending magnets to do the vertical focussing, we can expect the
maximum of the vertical beta function βy,max to be inside the bending magnet. We can
then take the optimum acceptance Ây from above and ask what minimum aperture can
be chosen in the bending magnet without limiting the vertical acceptance:

ây =
√

Ây · βy,max =
√

2.25 mm ·mrad · 25 m = 7.5 mm

So, without limiting the acceptance in the bending magnet the required gap height would
be only (2× 4 mm required for the vacuum chamber thickness):

ĝm = 2× 4 mm + 2ây = 23mm

Compared to the originally planned 38 mm of required magnetic gap height, this is a 40%
reduction!

f) Recall Maxwell’s equation for the magnetic induction induced by a current running
through a coil ∮

H · ds =
∫ ∫

j · dA

Assuming constant current density and evaluating the integral on the LHS

I = j ·A ∝ A ∝ gm

From Ohm’s law we get the power P = RI2 and if we consider that the ohmic resistance
scales inversely with the coil area R ∝ A−1 we can derive:

P = RI2 ∝ A−1A2 ∝ gm

i.e. the power scales linearly with the magnetic gap. Therefore, a 40% reduction of
magnetic gap height corresponds to a 40% decrease in power consumption!

2. Chromaticity Correction with Sextupoles in a Collider
No, sextupoles can’t be used to correct chromaticity locally in the interaction region.
Usually dispersion is suppressed at the IP. However, dispersion is needed to sort particles
according to their momentum at the sextupoles. Without dispersion the sextupoles can’t
correct chromaticity. In addition the very high betatron values around the interaction
region would let sextupole magnet errors have devastating influence on the beam.

3. Chromaticity in Linacs
Chromaticity describes the effect of a focussing error of a quadrupole lens for particles
which don’t have the ideal momentum. Therefor it clearly exists in linacs as well. In
order to correct chromaticity in a linac dispersion has to be introduced artificially. This
is normally done by using dipole magnets to form a dispersive chicane. The amount of
dispersion created is chosen to be as small as possible.
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