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Introduction to Particle Accelerator Physics

Tutorial 4 - Solutions

1. Quadrupole Errors and Tune Shifts
From the lecture recall the one-turn matrix at an arbitrary location:

M- ([ cos 27Q + asin 2wQ) Gsin 27(Q)
- —vsin 27Q cos 2mQ — asin 2mQ

Assume now that at this location a very small gradient error is applied to the otherwise
undisturbed optics (denoted by subscript 0):

M = (—Al(kl) ?)'Mﬁ

1 0\ [ cos 27Qo + o sin 27w Qg Bo sin 27Qg
—A(kl) 1 —0 sin 2wQq cos 2mQy — o sin 2w Qy

_ ( cos 2mQg + ag sin 27wy Bo sin 27

—v0 sin 21Qo — A(kl) cos 2mQo — A(kl)apsin2wQq  cos2wQo — o sin 2wQo — A(kl) By sin 2mQq

In order to investigate the new tune QQ = Qo + AQ we will compare the traces of the
matrices:

Tr(M) = Tr(M)
2c0821Q = 2cos2mQy — A(kl)Sosin2wQo

We keep in mind that Q = Q¢ + AQ and make use of a trigonometric identity to rewrite
the left hand side:

208 2mQ cos 2T AR — 2sin 2mQp sin 2rAQ = 2cos21Qo — A(kl)Fp sin 2w Qg

We recall the assumption that the tune shift will be small AQ < 1 which allows us to
apply the two Taylor approximations cos 2rAQ ~ 1 and sin 27AQ ~ 27 AQ:

2c082mQo — 2rAQ 2sin 2@y = 2cos2wQy — A(kl)Bo sin 2wQo
Which then gives us:
ArAQsin2rQy = A(kl)Bpsin 2wQq

Resulting in the tune shift:

AQ = )

2. Momentum Compaction and Transition Energy
From the lecture recall the definition of the momentum compaction factor:
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In order to look at changes in period length AT we have to keep in mind how T and L
are related and make use of the logarithmic derivative:
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In order to plug this together with the definition of the momentum compaction factor, we

need to investigate %:
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We can now put together the two intermediate results and insert the definition of the
momentum compaction factor:
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This result shows how the revolution period changes with momentum. There is a special
energy, the so-called transition energy -y, defined as:

1
Ttr = \/OTC

At transition energy the revolution period becomes independent of the momentum spread
and stays constant for off-momentum particles.

3. Quadrupole Scan for Emittance Measurement
Assume a quadrupole with focussing strength kI where the tunable strength is given by
k. Assume the drift distance to the screen monitor is given by L. The transfer matrix for

this setup is then
(1 L 1 0\ (1+Lkl L
M‘(o 1>'<kz1>_< kil 1)

Recall the transformation properties of the Twiss parameters
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where C denotes the cosine-like function and S denotes the sine-like function in the transfer

matrix
c s
u=(o 3)

Keeping this in mind we can write for G
B =C?By —25Caq + S*y

Since we are measuring the beam profile on the screen monitor, we are actually interested
in expressing o,

C?efy — 25Ceag + S2ey
= k*-(L*1?¢fo) + k - (2LIefy — 2L%lcap) + €y — 2Leag + L*evg
= k’co+ kel + ¢
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This is a parabolic expression in k. If we take data for o2 as a function of k we can derive
the three coefficients co, ¢1 and ¢y from a fit performed on the data. This allows us to
express the initial Twiss parameters as functions of the fit values
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We now recall that Gyyg — ag = 1 which allows us to calculate the emittance as a function
of the fit values
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