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Introduction to Particle Accelerator Physics

Tutorial 3 - Solutions

1. Dispersion Function
From the lecture recall the general solution of the dispersion function

D(s) = Dy cos% + D()psinz +p (1 — cos ;)

We can rewrite this and do a Taylor expansion of the sine and cosine functions keeping
our limit p — oo in mind

D(s) = Docosz +p— pcos% +D6psin%
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And finally for a straight section we apply the limit p — oo

lim D(s) = Dy + Dj{s
p—00
So if we enter a straight section with no dispersion at all (Dy = Dfy = 0), D(s) will remain

zero. In order to generate dispersion, we have to include a bend in our accelerator optics
where p # 0.

2. Momentum Compaction Factor
From the lecture recall the definition of the momentum compaction factor
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From this we can derive the maximum absolute change in path length
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Compared to the circumference of 288m this is a very small path length variation.

3. Stability Criterion for a Circular Accelerator
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Here we assume oy = —%6 = 0 which gives 79 = —1/fp and thus
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b) The betatron tune is defined as follows
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where the total phase advance in one revolution (accelerator circumference C) is given by
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Mpe, looks like a rotation matrix for the rotation angle p. The slight difference is the
factor [y respectively 1/8p. This leads to an ellipse in phase space. A point on this
ellipse advances by the angle p for one revolution in the accelerator. The tune @ is the
total betatron phase advance p divided by 2w. Therefore @) is the number of betatron
oscillations per revolution.

c) We can easily calculate the trace Tr(Mpgey) = 2cos  and since we know that the cos
function has the co-domain [-1,41] in R we can derive a simple stability criterion
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4. Phase Space Representations of Particle Sources

a) Particles are emitted from the entire source surface x € [—w,+w] with a trajectory
slope ¢ € [—7/2,4+m/2], i.e. the particles can have any 2’ € R. The occupied phase space
area is infinite.
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b) Particles with angle 2’ = 0 are emitted from the entire source surface z € [—w, +w]
and arrive behind the iris opening. For z = +w there is a maximum angle ' = +2w/d
that will still be accepted by the iris. This leads to a parallelogram in phase space. Such
a beam has a specific emittance given by the occupied phase space area.
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5. Decapolar Magnetic Field
We chose the ansatz presented in the lecture

Gy(z) = gz
where we have used a generic term proprtional to the gradient

d4Gy (v)
dz?
Since we know
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we can derive f(y)
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The potential is then

o(z,y) = Gylz)y+ / f(y)dy
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The equipotential lines are given by
zty — 22%y3 = const

The magnetic induction is given by

E(Qj‘,y) = (
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