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Introduction to Particle Accelerator Physics

Tutorial 3 - Solutions

1. Dispersion Function
From the lecture recall the general solution of the dispersion function
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We can rewrite this and do a Taylor expansion of the sine and cosine functions keeping
our limit ρ→∞ in mind
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And finally for a straight section we apply the limit ρ→∞

lim
ρ→∞

D(s) = D0 + D′
0s

So if we enter a straight section with no dispersion at all (D0 = D′
0 = 0), D(s) will remain

zero. In order to generate dispersion, we have to include a bend in our accelerator optics
where ρ 6= 0.

2. Momentum Compaction Factor
From the lecture recall the definition of the momentum compaction factor
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From this we can derive the maximum absolute change in path length
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= 6.3 · 10−4 · 9 · 10−4 · 3 · 108 m/s

1.04167 · 106 Hz
= 163 µm

Compared to the circumference of 288m this is a very small path length variation.

3. Stability Criterion for a Circular Accelerator
a)
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Here we assume α0 = −β′
0
2 = 0 which gives γ0 = −1/β0 and thus
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b) The betatron tune is defined as follows
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where the total phase advance in one revolution (accelerator circumference C) is given by
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MRev looks like a rotation matrix for the rotation angle µ. The slight difference is the
factor β0 respectively 1/β0. This leads to an ellipse in phase space. A point on this
ellipse advances by the angle µ for one revolution in the accelerator. The tune Q is the
total betatron phase advance µ divided by 2π. Therefore Q is the number of betatron
oscillations per revolution.

c) We can easily calculate the trace Tr(MRev) = 2 cos µ and since we know that the cos
function has the co-domain [-1,+1] in R we can derive a simple stability criterion

−1 ≤ Tr(MRev)
2

≤ +1

4. Phase Space Representations of Particle Sources
a) Particles are emitted from the entire source surface x ∈ [−w,+w] with a trajectory
slope φ ∈ [−π/2,+π/2], i.e. the particles can have any x′ ∈ R. The occupied phase space
area is infinite.



b) Particles with angle x′ = 0 are emitted from the entire source surface x ∈ [−w,+w]
and arrive behind the iris opening. For x = ±w there is a maximum angle x′ = ±2w/d
that will still be accepted by the iris. This leads to a parallelogram in phase space. Such
a beam has a specific emittance given by the occupied phase space area.

5. Decapolar Magnetic Field
We chose the ansatz presented in the lecture

Gy(x) = ĝx4

where we have used a generic term proprtional to the gradient
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dx4
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we can derive f(y)
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=⇒ f(y) = −6ĝx2y2

The potential is then
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The equipotential lines are given by

x4y − 2x2y3 = const

The magnetic induction is given by
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