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Introduction to Particle Accelerator Physics

Tutorial 2 - Solutions

1. Thin Lens Approximation
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In the thin lens approximation we assume
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2. Drift Sections and Quadrupole Doublets
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If we tune the quadrupole focusing strength so that % = 1 we get x = Lx{, which is
independent of x.

¢) From the lecture recall the definition of the quadrupole strength: k& = %g where g is
the focusing gradient of the quadrupole. In 2b) we required L = f and from the lecture



we recall % = k - L. Putting everything together we get
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3. Hill’s Equation
a) Hill’s equation is
2" +k(s)-x=0

Here we assume k(s) = k = const
" +kr=0 = 2a"=—kx

This is the ordinary differential equation (ODE) of a harmonic oscillator (HO).

b) For simplicity we introduce the notation x(0) = z¢ and 2/(0) = (. The general (real)
solution of the ODE z” = —kx is given by

J:,/
2(s) = zo - cos Vks + —2 .sinVks
()= 70 v

This is a harmonic oscillation for k > 0.
If k < 0 we make use of the identity vk = i\/[k|
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This is exponential damping or excitation.
If k = 0 the ODE becomes z” = 0 with the general solution

z(s) = zo + 48

This is linear propagation.

c) Within each interval ¢ where k(s) = k; is constant the solution of Hill’s equation is the
solution of a harmonic oscillator with k& = k;. If the solving functions z;(s) are combined
to a smooth function z(s) one has an approximation for the solution of the original Hill’s
equation.

4. Evolution of a Phase Space Ellipse
a) From the transport matrix of a drift section we gather
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So the divergence 2’ = z{, remains constant while the beam size x = x¢ + x{, - s increases
linearly with s.



b) The initially diverging beam becomes convergent after passing the focussing lens. It
converges until it reaches the beam waist where the beam size reaches a minimum (and
the divergence reaches a maximum). From here on the beam becomes divergent again.

‘ x focusing lens

/:O | ! L SX
e |

dive'rging converging  beam diverging
beam beam waist beam

5. Transformation of the Beta Function
a) The beta matrix transforms like
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Here we assume
and we know

Together this leads to
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b) The Twiss parameters transform like
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where C denotes the cosine-like function and S denotes the sine-like function in the trans-
formation matrix. In the thin lens approximation we can write
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This then gives us
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which is identical to the results we derived in 4a).

¢) The betatron function ((s) = Gy + Z—Z in the vicinity of a symmetry point in a drift
section grows quadratically with the distance s from the symmetry point. This growth
is larger for smaller values of 3y. This is a direct consequence of the Liouville’s theorem:
the area in phase space can not be reduced by a focussing element, thus a reduction
of transverse beam size leads to a simultaneous increase of beam divergence. This is
illustrated below (5* denotes ().
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