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1. Thin Lens Approximation
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In the thin lens approximation we assume
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2. Drift Sections and Quadrupole Doublets
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If we tune the quadrupole focusing strength so that L
f = 1 we get x = Lx′0 which is

independent of x0.

c) From the lecture recall the definition of the quadrupole strength: k = e
pg where g is

the focusing gradient of the quadrupole. In 2b) we required L = f and from the lecture



we recall 1
f = k · L. Putting everything together we get
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3. Hill’s Equation
a) Hill’s equation is

x′′ + k(s) · x = 0

Here we assume k(s) = k = const

x′′ + kx = 0 =⇒ x′′ = −kx

This is the ordinary differential equation (ODE) of a harmonic oscillator (HO).

b) For simplicity we introduce the notation x(0) = x0 and x′(0) = x′0. The general (real)
solution of the ODE x′′ = −kx is given by
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This is a harmonic oscillation for k > 0.
If k < 0 we make use of the identity
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This is exponential damping or excitation.
If k = 0 the ODE becomes x′′ = 0 with the general solution

x(s) = x0 + x′0s

This is linear propagation.

c) Within each interval i where k(s) = ki is constant the solution of Hill’s equation is the
solution of a harmonic oscillator with k = ki. If the solving functions xi(s) are combined
to a smooth function x(s) one has an approximation for the solution of the original Hill’s
equation.

4. Evolution of a Phase Space Ellipse
a) From the transport matrix of a drift section we gather(
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So the divergence x′ = x′0 remains constant while the beam size x = x0 + x′0 · s increases
linearly with s.



b) The initially diverging beam becomes convergent after passing the focussing lens. It
converges until it reaches the beam waist where the beam size reaches a minimum (and
the divergence reaches a maximum). From here on the beam becomes divergent again.

5. Transformation of the Beta Function
a) The beta matrix transforms like
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Here we assume
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So we end up with
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b) The Twiss parameters transform like β
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where C denotes the cosine-like function and S denotes the sine-like function in the trans-
formation matrix. In the thin lens approximation we can write
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which is identical to the results we derived in 4a).

c) The betatron function β(s) = β0 + s2

β0
in the vicinity of a symmetry point in a drift

section grows quadratically with the distance s from the symmetry point. This growth
is larger for smaller values of β0. This is a direct consequence of the Liouville’s theorem:
the area in phase space can not be reduced by a focussing element, thus a reduction
of transverse beam size leads to a simultaneous increase of beam divergence. This is
illustrated below (β? denotes β0).
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