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Introduction to Particle Accelerator Physics

Solutions to Exercise 4

1. Phase Space Representations of Particle Sources
a) Particles are emitted from the entire source surface x ∈ [−w,+w] with a trajectory slope
φ ∈ [−π/2,+π/2], i.e. the particles can have any x′ ∈ R. The occupied phase space area is infinite.

b) Particles with angle x′ = 0 are emitted from the entire source surface x ∈ [−w,+w] and arrive
behind the iris opening. For x = ±w there is a maximum angle x′ = ±2w/d that will still be
accepted by the iris. This leads to a parallelogram in phase space. Such a beam has a specific
emittance given by the occupied phase space area.

2. Quadrupole Errors and Tune Shifts
From the lecture recall the one-turn matrix at an arbitrary location:

M =
(

cos 2πQ + α sin 2πQ β sin 2πQ
−γ sin 2πQ cos 2πQ− α sin 2πQ

)
Assume now that at this location a very small gradient error is applied to the otherwise undisturbed
optics (denoted by subscript 0 ):

M̂ =
(

1 0
−∆(kl) 1

)
·M0



=
(

1 0
−∆(kl) 1

)
·
(

cos 2πQ0 + α0 sin 2πQ0 β0 sin 2πQ0

−γ0 sin 2πQ0 cos 2πQ0 − α0 sin 2πQ0

)
=

(
cos 2πQ0 + α0 sin 2πQ0 β0 sin 2πQ0

−γ0 sin 2πQ0 −∆(kl) cos 2πQ0 −∆(kl)α0 sin 2πQ0 cos 2πQ0 − α0 sin 2πQ0 −∆(kl)β0 sin 2πQ0

)
In order to investigate the new tune Q = Q0 + ∆Q we will compare the traces of the matrices:

Tr(M) = Tr(M̂)
2 cos 2πQ = 2 cos 2πQ0 −∆(kl)β0 sin 2πQ0

We keep in mind that Q = Q0 + ∆Q and make use of a trigonometric identity to rewrite the left
hand side:

2 cos 2πQ0 cos 2π∆Q− 2 sin 2πQ0 sin 2π∆Q = 2 cos 2πQ0 −∆(kl)β0 sin 2πQ0

We recall the assumption that the tune shift will be small ∆Q � 1 which allows us to apply the
two Taylor approximations cos 2π∆Q ≈ 1 and sin 2π∆Q ≈ 2π∆Q:

2 cos 2πQ0 − 2π∆Q 2 sin 2πQ0 = 2 cos 2πQ0 −∆(kl)β0 sin 2πQ0

Which then gives us:

4π∆Q sin 2πQ0 = ∆(kl)β0 sin 2πQ0

Resulting in the tune shift:

∆Q =
1
4π

β0∆(kl)

3. Momentum Compaction and Transition Energy
From the lecture recall the definition of the momentum compaction factor:

∆L

L
= αc ·

∆p

p

In order to look at changes in period length ∆T we have to keep in mind how T and L are related
and make use of the logarithmic derivative:

T =
L

cβ

log T = log L− log cβ

=⇒ dT

T
=

dL

L
− dβ

β

In order to plug this together with the definition of the momentum compaction factor, we need to
investigate dβ

β :

p = m0γβc

dp

dβ
= m0c

d

dβ
(γβ)

= m0cγ + m0cβ
dγ

dβ

= m0cγ
(
1 + β2γ2

)
= m0cγ

3

=⇒ dp

p
= γ2 dβ

β



We can now put together the two intermediate results and insert the definition of the momentum
compaction factor:

∆T

T
=

∆L

L
− ∆β

β

= αc ·
∆p

p
− 1

γ2
· ∆p

p

=
(

αc −
1
γ2

)
∆p

p

This result shows how the revolution period changes with momentum. There is a special energy,
the so-called transition energy γtr, defined as:

γtr =
1
√

αc

At transition energy the revolution period becomes independent of the momentum spread and
stays constant for off-momentum particles.
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