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Introduction to Particle Accelerator Physics

Solutions to Exercise 2

1. Thin Lens Approximation
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In the thin lens approximation we assume:
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2. Drift Sections and Quadrupole Doublets
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If we tune the quadrupole focusing strength so that L
f = 1 we get x = Lx′0 which is independent

of x0.

c) From the lecture recall the definition of the quadrupole strength: k = e
pg where g is the focusing

gradient of the quadrupole. In 2b) we required L = f and from the lecture we recall 1
f = k · L.

Putting everything together we get:
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3. Stability Criterion for a Circular Accelerator
a)
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So here with α0 = −β′
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b) The betatron tune is defined as follows:
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where the total phase advance in one revolution (accelerator circumference C) is given by
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MRev looks like a rotation matrix for the rotation angle µ. The slight difference is the factor β0

respectively 1/β0. This leads to an ellipse in phase space. A point on this ellipse advances by the
angle µ. The tune Q is the total betatron phase advance µ divided by 2π. Therefore Q is the
number of betatron oscillations per revolution.

c) We can easily calculate the trace Tr(MRev) = 2 cos µ and since we know that the cos function
has the co-domain [-1,+1] in R we can derive a simple stability criterion:
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≤ +1

4. Transformation of the Beta Function
a) The beta matrix transforms like
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So we end up with
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where C denotes the cosine-like function and S denotes the sine-like function in the transformation
matrix. In the thin lense approximation we can write
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which is identical to the results we derived in 4a).

c) The betatron function β(s) = β0+ s2

β0
in the vicinity of a symmetry point in a drift section grows

quadratically with the distance s from the symmetry point. This growth is larger for smaller values
of β0. This is a direct consequence of the Liouville’s theorem: the area in phase space can not be
reduced by a focussing element, thus a reduction of transverse beam size leads to a simultaneous
increase of beam divergence. This is illustrated below (β? denotes β0).

5. Evolution of a Phase Space Ellipse
a) From the transport matrix of a drift section we gather(
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)
So the divergence x′ = x′0 remains constant while the beam size x = x0 + x′0 · s increases linearly
with s.



b) The initially diverging beam becomes convergent after passing the focussing lens. It converges
until it reaches the beam waist where the beam size reaches a minimum (and the divergence reaches
a maximum). From here on the beam becomes divergent again.
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