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Introduction to Particle Accelerator Physics

Solutions to Exercise 2

1. Thin Lens Approximation
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In the thin lens approximation we assume:
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2. Drift Sections and Quadrupole Doublets

a)
wo-(3 1)

r=z0+ Lz, = a5="7—

b)

M = MQDMDMQF = (

==
— o
N~~~
7N
O =
=t
~~_
7N
‘ =
|
= O
~
Il
N
—_
L
~
e
—_
+
|t~
~

L
If we tune the quadrupole focusing strength so that % =1 we get * = L, which is independent
of Zo-

¢) From the lecture recall the definition of the quadrupole strength: k = % g where g is the focusing

gradient of the quadrupole. In 2b) we required L = f and from the lecture we recall % =k-L.
Putting everything together we get:
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3. Stability Criterion for a Circular Accelerator
a)
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So here with a9 = —%‘l) =0, we get vo = —1/0y and
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b) The betatron tune is defined as follows:
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where the total phase advance in one revolution (accelerator circumference C) is given by
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Mpe, looks like a rotation matrix for the rotation angle u. The slight difference is the factor (5
respectively 1/8p. This leads to an ellipse in phase space. A point on this ellipse advances by the
angle p. The tune @ is the total betatron phase advance p divided by 2w. Therefore @ is the
number of betatron oscillations per revolution.

c) We can easily calculate the trace Tr(Mpey) = 2 cos u and since we know that the cos function
has the co-domain [-1,+1] in R we can derive a simple stability criterion:
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4. Transformation of the Beta Function
a) The beta matrix transforms like
B, = MBoM™
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where
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Together this leads to
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So we end up with



b)
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where C' denotes the cosine-like function and S denotes the sine-like function in the transformation
matrix. In the thin lense approximation we can write
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This then gives us
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which is identical to the results we derived in 4a).

¢) The betatron function §(s) = fo+ g—i in the vicinity of a symmetry point in a drift section grows
quadratically with the distance s from the symmetry point. This growth is larger for smaller values
of By. This is a direct consequence of the Liouville’s theorem: the area in phase space can not be
reduced by a focussing element, thus a reduction of transverse beam size leads to a simultaneous
increase of beam divergence. This is illustrated below (8* denotes ().
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5. Evolution of a Phase Space Ellipse
a) From the transport matrix of a drift section we gather
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So the divergence =’ = z{, remains constant while the beam size © = zy + z{, - s increases linearly
with s.



b) The initially diverging beam becomes convergent after passing the focussing lens. It converges
until it reaches the beam waist where the beam size reaches a minimum (and the divergence reaches
a maximum). From here on the beam becomes divergent again.
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