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Introduction to Particle Accelerator Physics

Solutions to Exercise 1

1. Relativistic Particles
a) Recall from the lecture the definition of γ:

γ =
Etot

E0
=

E0 + Ekin

E0
= 1 +

Ekin

m0c2

The beam is accelerated up to Ekin = 2.4 GeV, so

γ = 1 +
Ekin

E0
= 1 +

2.4 GeV
511keV

c2 · c2
= 1 +

2.4 · 109 eV
511 · 103 eV

≈ 4698

b)

γ =
1√

1− β2
=⇒ β =

√
1− γ−2 = 0.99999997733... ≈ 1

=⇒ The electrons are highly relativistic: v = βc ≈ c

c)

frev =
v

C
=

βc

C
≈ c

C
≈ 3 · 108 m/s

288 m
≈ 1.042 MHz

d)

me = 511
keV
c2

= 511 · 103 V · 1.602 · 10−19C · 1
(3 · 108 m/s)2

= 9.11 · 10−31 kg = me

e)

γ =
Etot

E0
=

E0 + Ekin

E0
= 1 +

Ekin

m0c2

At SLS electrons are accelerated to 2.4 GeV: γSLS = 1 + 2.4 GeV
511 keV ≈ 4698

At LHC protons are accelerated to 7 TeV: γLHC = 1 + 7 TeV
938 MeV ≈ 7464

=⇒ The LHC protons have a higher kinetic energy than the SLS electrons.
Since mp = 1836 · me, protons at an energy of 1836 · 2.4 GeV ≈ 4.4 TeV have the same kinetic
energy as the SLS’ electrons.

2. Electron Beam in a Storage Ring
a) Recall from the lecture the definition of the magnetic rigidity:

Bρ =
p

e



In more practical units this becomes:

Bρ [T ·m] =
1

0.29979
· p [GeV/c]

Here we assume the whole storage ring consists only of bending magnets, so R = C/2π and we
get:

BR [T ·m] =
1

0.29979
· p [GeV/c] =⇒ B [T] =

1
0.29979

· p [GeV/c] · 2π

C [m]
= 175 mT

b)

Bρ [T ·m] =
1

0.29979
· p [GeV/c] =⇒ B [T] =

1
0.29979

· p [GeV/c] · 1
ρ [m]

= 1.334 T

c) The earth’s magnetic field will deflect the particles in the beam if it has a non-zero transverse
(i.e. vertical or radial) component with respect to the particle’s orbit. However, the strength of
the earth’s magnetic field (estimated to be 3 ·10−4 T) is far less than the bending magnet strength
which is roughly 1 T. The tolerance of the magnets will be roughly 1% and therefore there will be
corrector coils capable of correcting deviations of this order. Thus, we do not have to worry about
the earth’s magnetic field.

d)
Fgrav = meg = 9.109 · 10−31 kg · 9.81 m/s2 ≈ 8.94 · 10−30 N

Fbend = evB = eβcB ≈ ecB ≈ 1.602 · 10−19 C · 3 · 108 m/s · 1.334 T ≈ 6.41 · 10−11 N

=⇒ Fbend ≈ 1019 · Fgrav

3. Dipole Magnets vs. Static Electric Fields
Highly relativistic electrons: v ≈ c. Recall the Lorentz force in absolute values: F = q (E + vB).
Using a static electric field: FE = qE, but using a dipole magnet: FB = qvB ≈ qcB. By using
dipole magnets the force applied to the particle is scaled by its velocity, thus much less field strength
is required to apply the same force as a static electric field.

4. Hill’s Equation
a) Hill’s equation is:

x′′ + k(s) · x = 0

Here we assume k(s) = k = const:

x′′ + kx = 0 =⇒ x′′ = −kx

This is the ordinary differential equation (ODE) of a harmonic oscillator (HO).



b) For simplicity we introduce the notation x(0) = x0 and x′(0) = x′0. The general (real) solution
of the ODE x′′ = −kx is given by:

x(s) = x0 · cos
√

ks +
x′0√
k
· sin

√
ks

This is a harmonic oscillation for k > 0.
If k < 0 we make use of the identity

√
k = i

√
|k|:

x(s) = x0 · cosh
√
|k|s +

x′0√
|k|

· sinh
√
|k|s

This is exponential damping or excitation.
If k = 0 the ODE becomes x′′ = 0 with the general solution:

x(s) = x0 + x′0s

This is linear propagation.

c) Within each interval i where k(s) = ki is constant the solution of Hill’s equation is the solution
of a harmonic oscillator with k = ki. If the solving functions xi(s) are combined to a smooth
function x(s) one has an approximation for the solution of the original Hill’s equation.
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