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Abstract

Past research at the Advanced Light Source (ALS) pro-
vided a proof-of-principle demonstration that machine learn-
ing (ML) methods could be effectively employed to compen-
sate for the significant perturbations to the transverse elec-
tron beam size induced by user-controlled adjustments of
the insertion devices. However, incorporating these methods
into the ALS’ daily operations has faced notable challenges.
The complexity of the system’s operational requirements
and the significant upkeep demands have restricted their
sustained application during user operation. In this paper
we summarize the development of a more robust ML-based
algorithm that utilizes a novel online fine-tuning approach
and its systematic integration into the day-to-day machine
operations.

INTRODUCTION

The performance of storage ring light sources is crit-
ically reliant on the stability of the radiation output in
terms of source position/angle and intensity. On shorter
timescales, radiation intensity stability is impacted by the
electron beam’s transverse size response to changes in the
insertion device (ID) parameters during operation. Typi-
cally, in 3rd generation light source horizontal beam size
remains largely constant across different ID settings, while
vertical size is sensitive to skew quadrupole-field errors from
IDs. To correct these, storage rings like the Advanced Light
Source use quadrupole and skew quadrupole correctors in a
feed-forward configuration [1]. Corrections based on beam
measurements create lookup tables specifying necessary
lattice corrections for each ID, which combine via linear
superposition. However, these corrections are compromised
by short-term drifts during measurements and long-term
drifts from external factors, reducing their effectiveness.

Although feedback systems can compensate for these
drifts based on real-time beam size monitoring, noise limi-
tations and insufficient closed-loop bandwidth impede their
effectiveness. Recent studies suggest augmenting lookup
tables with a neural network trained on beam size, ID pa-
rameters, and dispersion wave data to improve control [2],
yet sustained implementation has been challenging.

This paper summarizes the findings and advancements de-
tailed in [3], focusing on the online fine-tuning mechanism
and the performance during user operation. An illustration
of the effectiveness of the method is given in Fig. 1 showing
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data during about a week of ALS user operation after its
implementation in the fall of 2023. As the users continually
adjust the ID parameter setpoints to accommodate their ex-
periments (the traces in the two top graphs), the measured
rms vertical beam size is seen to remain stabilized within a
band that is very close to the estimated ~0.3 pm rms noise
floor (red trace in the bottom graph). For comparison, the
plot also shows the inferred beam size (blue trace) that would
have been observed with the ML-based feed-forward (FF)
system turned off.

=60+ ]
B AL L
40 - =
o
S 20 = WHJL” .Ilq" { WJ_‘_P‘;H—:‘W/-!’—
Q - i l_rJ U -
— — L
0 L L L L
0 20 40 60 80 100 120
Time [h]
= 40 \
A l l
43;-3 20 - 1
& i _ | B |
s
= LU |
% -20 ‘ . . . .
0 20 40 60 80 100 120
Time [h]
46 — Uncorrected — Corrected
=44
=42
b 40 i
38 : ‘ : :
0 20 40 60 80 100 120
Time [h]

Figure 1: Operational performance of the ML-based ID
FF system during a user run starting on November 7, 2023.
Shown are the vertical ID gaps (top), the elliptical polarized
undulator (EPU) phase or longitudinal offsets (center), and
the vertical electron beam size (bottom) as measured at ALS
diagnostic beamline 3.1 (red) and as inferred (blue) if no
correction had been applied. One beam outage occurred at
hour 42 during that 5 day window; notably, the beam size
control algorithm dis- and re-engaged automatically without
human intervention (see Section for a detailed discussion).

ONLINE FINE-TUNING

As detailed in Ref. [3], the task of training a base model ca-
pable of independently and effectively predicting beam size
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presents a formidable challenge. The scarcity of available
machine time for acquiring sufficient training data necessi-
tates the adoption of an alternative approach. This method
involves the continuous adaptation of the model during user
operations.

During the proof of principle studies [2], such adaptation
has been applied through online retraining by integrating
the original training data with a randomly downsampled seg-
ment from the ongoing user run, subsequently continuing
the training of the active model. However, with hundreds of
thousands of samples in the data set, retraining demanded
approximately 15 min to complete on a CPU, which signif-
icantly limits the model’s reactivity to changes in the ID
configuration space.

However, these challenges are widely recognized in the
Deep Learning community. Training a neural network
(NN) from scratch requires substantial computational power,
memory resources, and large training datasets [4]. Fine-
tuning [5, 6] is a widely used solution for addressing these
challenges. The core of this approach lies in the realization
that rapid and efficient adaptation to new data—achieved
through the adjustment of NN weights—can greatly enhance
the model’s predictive accuracy while circumventing the
extensive data processing typically necessitated by compre-
hensive training phases [7].

In our approach to fine-tuning the model [3], we exclu-
sively utilize data acquired during the current user run which
is stored in a first-in-first-out buffer, opting not to incorpo-
rate the original training data. To safeguard against any
potential runaway scenarios, each training cycle commences
with the original base model. This strategy effectively an-
chors the model, ensuring it remains closely aligned with
our dedicated training dataset, thereby maintaining stability
and reliability in the model’s predictive performance.

An ostensible difficulty is that to fine tune the NN during
operation, one would need to know the uncorrected beam
size data, whereas only measurements of the beam size after
correction are available, since the NN FF system is always
active. One method to overcome this difficulty is to derive
the presumed uncorrected beam size oo from knowledge
of the measured corrected value oy, and the current vertical
dispersion wave (see Ref. [3]).

It is worth highlighting that the online fine-tuning method
employed in our study essentially functions as a form of feed-
back (FB). By adjusting the amount of data in the fine-tuning
buffer, we control the noise level in the data, and by tuning
the fine-tuning hyperparameters, we modulate the model’s
responsiveness to new data. The balance between FF and
FB elements in such an elegant way is a key feature of our
ID compensation algorithm which contributes significantly
to its robustness.

NN FF SYSTEM PERFORMANCE

In this section we evaluate the capabilities of the NN-
based ID FF algorithm to stabilize the vertical beam size
at the ALS. As detailed in Ref. [2], scanning transmission
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x-ray microscopy (STXM) [8] beamlines are very sensitive
to variations of the transverse photon distribution and the
quality of their experiments can be significantly impacted
by such fluctuations.

Our measurements have established a linear relationship
between variations in the vertical beam size at the diagnostic
beamline 3.1 and subsequent changes in intensity observed
in STXM scans taken at beamline 5.3.2.2 (consistent with
resulting vertical beam size changes being driven by per-
turbations of the vertical dispersion wave, the dominating
contribution to the vertical emittance ). Specifically, we ob-
served that a 10 % change in the vertical beam size resulted
in approximately a 9 % intensity change in the STXM scan,
which was common during user operations over the duration
of a STXM measurement.

Performance During User Operation

At the time of writing, the NN-based FF system had been
continuously operational for two months. The performance
over about one week was showcased in the introduction
in FIG 1 and is typical. The vertical beam size stability
has been remarkably consistent, to within an average of
0.32 um rms per user run (or 0.75%), closely approaching
the measurement noise floor at 0.3 pm rms.

This can be seen in more detail in FIG 2: data points to
the right of the shaded area, where the two-month period
with operating NN FF system is segmented into 7 uninter-
rupted user operation intervals. For each interval we report
the rms beam size fluctuations before correction (blue), and
as corrected using the base model without fine-tuning (red),
and finally as measured with correction by the fine-tuned
system (crosses). The blue and red data points are inferred
quantities; specifically the blue data were obtained by sub-
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Figure 2: The data on the right of the shaded area is with the
NN FF system fully deployed: crosses represent the vertical
beam size rms fluctuations as corrected by the fine-tuned NN
model and measured. They are compared to the uncorrected
(blue circles) and partially corrected (red circles) beam size
fluctuations, the latter representing the correction made by
the NN FF system without fine-tuning; the values for both of
these data sets are inferred estimates (see body text). Each
data point is a time average over about one week of user
operation. The data points on the left of the shaded area
represent a backward-test of the NN model based on archived
data.
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Figure 3: Frequency spectrum of the vertical beam size
during 760 h of user operation with fully functional NN FF
system (red), and the inferred beam size without correction
(blue). The features at around 0.1 Hz are attributed to EPUs,
the spikes above 1 Hz are associated to beam injection tran-
sients during top off.

tracting the contribution due to the vertical dispersion wave
adjustments from the measurement of the stabilized vertical
beam size. Barring the small hysteresis effects not accounted
for in our simplified model (see Ref. [3]), we believe the
uncorrected beam size so calculated should be a fairly accu-
rate estimate of the actual beam size that would have been
observed without correction. Note that in the figure the data
points are time averages during the operation period (about
a week).

The red data points preceding the shaded area are the
result of a study in which the NN model trained on June 2024
was retroactively applied to archived data of beam and ID
parameters from the preceding year, which is not suitable for
training a model [3]. The backward-test results indicate that
the uncorrected and corrected data points remain consistent
over time, suggesting minimal impact from machine drifts
on the neural network model’s accuracy and implying that
frequent model refreshes may be unnecessary and accuracy
could be enhanced by accumulating extended user operation
data.

Additional insight can be gained by data analysis in the fre-
quency domain. In FIG 3, a discrete Fourier transformation
of 760 h of user operation data with the NN FF system on
confirms the system’s effectiveness over a broad frequency
range. Spikes at around 0.1 Hz, linked to EPU phase switch-
ing, indicate areas for improvement with better training data.
The loss of correction effectiveness at lower frequencies is
also influenced by EPU phase switching, which, occurring
over extended periods, can cause low-frequency data modu-
lation. However, the total integrated spectral power in this
range is small, minimally impacting overall performance
and emphasizes the robust performance of the NN-based FF
system across the evaluated time frame.
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Recovery After Beam Outage

During the two-month operation, the facility experienced
12 beam outages, each followed by recovery. Intervals be-
tween events ranged from minutes to hours. In each instance,
the NN-based FF disengaged at the trip and autonomously
re-engaged before user operation resumed, without manual
intervention.
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Figure 4: Example of beam dump with subsequent restart
of the NN-based FF without human intervention. The top
two plots show ID gaps and EPU offsets, respectively. The
3rd plot shows the vertical beam size and the lower plot the
sum of the currently active inhibitor PVs.

An example of a beam outage event, caused by an RF
power trip, followed by a machine refill and closing of the
NN-based FF loop without human intervention, is shown
in FIG 4. The beam was lost at 14:57, immediately trigger-
ing three of the six inhibitor PVs designed to prevent the
NN-based FF from acting on the skew quadrupoles under
conditions that are not operationally safe and reliable. At
17:15, during the process of reloading the lattice, the skew
quadrupole power supplies exhibited transient conditions, as
indicated by the activation of all six inhibitor PVs. Follow-
ing this, the machine was refilled. However, a subsequent
RF fault caused another beam loss. The machine was suc-
cessfully filled at 19:56, which was then followed by the
closure of the ID gaps. From 20:03 onwards, all conditions
for closing the FF loop were met, and skew quadrupole cor-
rections were one again applied. This is evidenced by the
vertical beam size returning to its target value of 42.5 um.
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