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Synchrotron light sources, arguably among the most powerful tools of modern scientific discovery,
are presently undergoing a major transformation to provide orders of magnitude higher brightness and
transverse coherence enabling the most demanding experiments. In these experiments, overall source stability
will soon be limited by achievable levels of electron beam size stability, presently on the order of several
microns, which is still 1–2 orders of magnitude larger than already demonstrated stability of source position
and current. Until now source size stabilization has been achieved through corrections based on a combination
of static predetermined physics models and lengthy calibration measurements, periodically repeated to
counteract drift in the accelerator and instrumentation. We now demonstrate for the first time how the
application of machine learning allows for a physics- and model-independent stabilization of source size
relying only on previously existing instrumentation. Such feed-forward correction based on a neural network
that can be continuously online retrained achieves source size stability as low as 0.2 μm (0.4%) rms, which
results in overall source stability approaching the subpercent noise floor of the most sensitive experiments.
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Introduction.—Synchrotron radiation sources, specifi-
cally third-generation storage ring light sources, have
been tremendously successful tools of scientific discov-
ery since the early 1990s [1]. As these facilities mature, a
new era of fourth-generation storage rings (4GSRs) based
on diffraction-limited storage rings (DLSRs) [2–8] is
being ushered in. These sources will increase average
brightness by 2–3 orders of magnitude while also deliv-
ering high degrees of transverse coherence, for the first
time even for x rays. High coherent flux will enable
scientists to understand material compositions and
dynamics ranging in length from microns to nanometers
and in time from minutes to nanoseconds. The most
notable and direct result of the new beam properties will
impact two techniques in particular. Ptychography [9]
will take direct advantage of an increase in coherent flux
to decrease measurement times by orders of magnitude.
This will allow for the collection of complex 3D chemical
maps with unprecedented resolution and will lead to
deeper understanding of electrochemical systems such as
batteries and fuel cells. The measurement of dynamics
and kinetics to study chemical systems is another cat-
egory that will be directly impacted by the new sources.
An emerging technique to study this is x-ray photon
correlation spectroscopy (XPCS) [10]. Ptychography as

well as XPCS rely heavily on high beam stability over
extended periods of time.
To large extent the success of storage ring light sources

lies in their stability, resulting in constant position, angle,
and intensity of radiation delivered at a tunable wavelength
with narrow width. In order to maintain constant intensity,
a combination of top-off injection (maintaining constant
beam current) [11,12] and precise control over source
position and size is required. In third-generation light sources
(3GLSs) the latter usually called for transverse beam size
stability within 10% of the rms electron beam size [13,14].
Now, however, first experiments at these sources are starting
to show limitations arising from such levels of source size
control and it is evident that DLSRs, operating at much
smaller source sizes, will call for significantly tighter control
over source size stability in order to exploit ultrahigh
brightness and transverse coherence.
State-of-the-art stabilization effort and its limitations.—

A typical example for the aforementioned source size
stabilization challenge is shown in Fig. 1. The vertical
electron beam size as measured at diagnostic beam line
3.1 [15] of Lawrence Berkeley National Laboratory’s
Advanced Light Source (ALS) is displayed during a typical
user run. While the horizontal beam size remains constant
(spikes observed in both planes at the same time are
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perturbations from top-off injection occurring roughly
twice a minute), the vertical beam size fluctuates due to
changes in the magnetic field configuration of the various
insertion devices (IDs), e.g., variable field undulators and
wigglers. Although such vertical beam size fluctuations are
below typical stability requirements of 3GLSs, already
today, at experiments that are highly sensitive to intensity
fluctuations, such as scanning transmission x-ray micros-
copy (STXM) [16–19], scans that typically take several
minutes at a single energy, will show both banding and
pattern noise. The former, clearly visible in Fig. 1 (right), is
caused by low-frequency variations in intensity (due to
electron beam size changes at the source point) while the
latter is the consequence of high frequency perturbations
(e.g., vibrations of optical elements in the beam line).
A typical STXM experiment involves quantifying contrast
changes across several images acquired at different x-ray
energies, but without a concurrent source intensity meas-
urement, normalization within a single image is not
possible and normalization across several images is less
precise. Likewise, since data acquisition time per pixel
(≈1 ms) is very short compared to typical perturbations
from ID configuration changes, such effects cannot be
averaged out during the scan. Thus, banding will effectively
determine the noise floor of the experiment. While tight
control over the beam line and end station equipment along
with advances in detector technology enable a noise floor
below 1%, the data shown here indicate substantially larger
noise caused by low-frequency electron beam size varia-
tions resulting from ID gap or phase motion which changes
the magnetic field configuration in the ID.
Common practice in state-of-the-art 3GLSs is to counter-

act ID gap or phase motion-induced perturbations on the
electron beam through a two-pronged approach involving
both local and global corrections: orbit correction (e.g.,
[20–22]) and optics correction whereby the latter usually
comprises linear optics correction (e.g., [21,23–25]), cor-
rection of the coupling between horizontal and vertical

planes (e.g., [24,26–29]), and in some cases also nonlinear
correction (e.g., [24,30,31]). Orbit and linear optics cor-
rections are often implemented as both feedbacks (FBs)
and feed forwards (FFs) because static model based FF
corrections alone are usually not capable of sufficiently
correcting transient behavior arising from comparably fast
ID gap or phase motion. Feed-forward corrections usually
rely on a physics model (for which linear approximations
are used and linear superposition is assumed) and/or beam-
based measurements rendering look-up tables that describe
required corrections for a specific ID gap and phase setting.
Recording a look-up table has to be performed for each
ID individually, requires ample dedicated machine time,
and, because it is usually a lengthy measurement, is also
susceptible to drift. Because of the large number of IDs in
most 3GLSs and the scarcity of dedicated machine time,
these look-up tables cannot be frequently remeasured.
Hence, as the machine drifts (temperature, ground motion,
tidal effects, etc.), the fidelity of the look-up table and thus
of the FF correction tends to deteriorate. Feedback correc-
tions attempt to counteract such drift, but often do not offer
sufficient closed-loop bandwidth to remove perturbations
over the entire desired range.
In spite of the aforementioned correction schemes,

residual ID-induced skew quadrupole errors (spurious
focusing fields that render undesired coupling of motion
in the transverse planes) result in vertical beam size
variations in the storage ring (cf. Fig. 1, left). Low and
medium energy light sources are especially susceptible to
these errors due to the low beam rigidity and the prevalence
of strong elliptically polarizing undulators (EPUs) [32]. As
in most 3GLSs, the ALS performs coupling corrections for
ID-induced skew quadrupole fields in a FF configuration
whereby a large number of skew quadrupole coils can be
excited to compensate for ID-induced skew components
[33]. Look-up tables are on average re-recorded at most
twice a year and for a typical EPU require an entire eight-
hour machine shift. Furthermore, as DLSRs come online,
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FIG. 1. Left: Electron beam size as measured the ALS diagnostic beam line 3.1 during a user run (top) showing> 2 μm variation (4%)
in the vertical caused by changes in the ID gaps (bottom). Right: STXM image from ALS beam line 5.3.2.2 showing banding (3.2% rms
intensity variation) as a consequence of various ID configuration changes over the course of the scan.
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source beam sizes will shrink dramatically, while ID
technology is advancing at a comparably slower pace.
We can assume that residual errors will remain comparable
to present-day levels and, therefore, size stability will
deteriorate dramatically if a new approach to minimizing
residual errors is not developed.
A new approach: machine learning and neural

networks.—Recently, data driven methods have been applied
to many different research areas. Specifically, neural net-
works (NNs) have proved to be most effective for nonlinear
function fitting, both theoretically and empirically [34,35].
Here, we propose a NN approach to predicting electron
beam size as a function of arbitrary ID gap or phase
configurations and employing this prediction to correct
for perturbations thereby suppressing source size fluctua-
tions. The NN can learn complex nonlinear relationships
between ID settings and vertical beam size using large
amounts of training data and advanced optimization tech-
niques, which is a substantial improvement compared to the
current approach based on linear optics and superposition.
Control of the electron beam size exploits the fact that

commonly 3GLSs use skew quadrupoles to correct betatron
coupling and spurious vertical dispersion first, and then to
excite a vertical dispersion wave, which improves beam
lifetime within the boundaries of the diffraction limit
[26,36–38]. Such a dispersion wave generates vertical
emittance (a global and conserved quantity), which results
in a dominating contribution to the vertical source size at
most source points. For these studies we can therefore
slightly adjust the excitation of this vertical dispersion wave
to control the vertical emittance and thus the vertical size
at the source points [as an example, Fig. 5 in [33] shows
various vertical beam size contributions in a typical ALS ID
source point. The contribution from ID-induced betatron
coupling (canceled by skews) is smaller than that generated
by the dispersion wave (excited by skews)]. At the ALS,
32 skew quadrupoles are included in the generation of the
dispersion wave. We shall refer here to the dispersion wave
parameter (DWP) as the scaling parameter describing our
small relative adjustment of the standard skew quadrupole
excitation pattern (≤ 15% of the overall vertical dispersion
wave amplitude).
We demonstrate here that, given the ID gap or phase

settings and DWP, the vertical source size can be predicted
to within 0.4% rms (0.2 μm at the diagnostic beam line)
with NNs. To train the NN model, high quality input data
needs to be collected. For this purpose, beam sizes (as
measured at, e.g., a diagnostic beam line) along with all
relevant beam parameters and ID settings have to be
captured at high data rates. At the ALS we have so far
chosen an acquisition rate of 10 Hz (faster than beam size
measurement update rates and typical ID gap or phase
variations) at which we collect data for roughly 35
independent channels. Input and output data are normalized
with mean 0 and standard deviation 1. The NNs are

implemented using Keras with TensorFlow backend [39] using
mean squared error as the loss function. The models are
trained using the back-propagation method [40] employing
the Adam optimizer [41] for 50 epochs. The learning rate is
set to 10−3 with a decay multiplier of 0.8 after each epoch
for convergence. We screened a variety of NN architec-
tures, regularization methods, and activation functions.
Deeper (i.e., more hidden layers) and wider (i.e., more
nodes per layer) neural networks can generally provide
better fitting on training data; however, a larger model is
prone to overfitting and requires larger computational
resources for both training and correction stages.
We choose a NN containing three hidden layers with
sizes 128, 64, 32, respectively, with the rectified linear
unit activation function [42]. A small L2 regularization with
λ ¼ 10−4 and a dropout with rate 0.2 was also used. The L2

regularizer penalizes the large weights in neural networks
and the dropout reduces the “co-adapting” between the
weights [43], which is helpful to improve the general-
izability of the model. These parameters are optimized
through cross validation [44], which is commonly used for
model selection. The training takes 20 minutes on a single
desktop-class CPU. The root mean squared error (RMSE)
for training data is 0.16 μm while the validation RMSE is
0.20 μm. We also implemented a conventional linear and
quadratic regression model by assuming that beam size
can be approximated by linear or quadratic functions of the
ID settings. The best training and validation RMSEs are
0.57 μm and 0.62 μm, respectively. The RMSEs appear to
saturate towards orders 5–6 indicating further increase of
polynomial order cannot improve the prediction. Figure 2
shows a visualization of the prediction on a segment of the
validation dataset. The NN approach clearly outperforms
the polynomial regressions. One of the possible reasons is
that the NN can capture the interactions between IDs much

FIG. 2. Measured vertical beam size and predictions from
polynomial regression and NN (top). Difference between pre-
dicted and measured vertical beam sizes (bottom). In terms of
RMSE, the NN outperforms the regression models by roughly a
factor of 3.
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more flexibly compared to the conventional regression
method. The NN model has been proven to be effective for
beam size prediction with RMSE 0.2 μm. Given a target
beam size and the current combination of ID settings, we
prescreen 100 possible DWPs between −0.06 to 0.06
uniformly using the NN. Evaluating 100 DWPs takes only
milliseconds on a single CPU, which enables us to imple-
ment this control at > 10 Hz. We select the DWP which
renders the beam size closest to the target. The selected
DWP value is used in a FF manner to adjust the skew
quadrupole excitation pattern that generates the vertical
dispersion wave. The experimental result is shown in
Fig. 3. We turned FF control on and off repeatedly to
verify the effectiveness of our beam size stabilization
approach. In this example, when the FF is off, the variation
of vertical beam size as measured at the diagnostic beam
line is 1.5 μm rms (3%) and 7.5 μm peak-to-peak (15%).
When the NN-based FF is turned on, this variation
decreases to 0.2 μm rms (0.4%) and 1.9 μm peak to peak
(4%). For comparison with the NN-based FF, we also
implemented a simple FB loop relying solely on beam size

measurement as an input and returning a DWP requested
for beam size correction. During calm periods with only
very slow ID configuration changes, the FB performance
was capable of delivering similar rms stabilization as the
NN-based FF. However, as soon as ID configurations
changed at rates typically observed during experiments
(e.g., 4 mm=s vertical gap motion and 16.7 mm=s hori-
zontal shifts), the FB failed. Depending on PID tuning it
was either not capable of stabilizing against transients
(leading to 3 μm peak-to-peak vertical beam size variation,
i.e., 6%) or it became unstable. The NN-based FF approach
outperforms the FB method primarily for two reasons.
First, the FF approach is agnostic to the current beam size.
Implementing this FF does not require beam size as an
input, hence adjusting beam size ahead of the measurement
and avoiding measurement delay. Second, the NN-based
FF does not have to adjust the DWP in a continuous fashion
employing a series of small steps. It can instantaneously
adjust the DWP by any large amount required to maintain
stable beam size without overshoot.
So far, these experiments have revealed that the NN-based

FF can stabilize the vertical beam size at the diagnostic beam
line. It is, however, a priori not at all evident that stabilizing
the source size at one point in the storage ring is equivalent
to stabilizing the beam at the relevant source points. We
originally chose to act on the beam size by means of the
vertical dispersion wave, since it adjusts the vertical emit-
tance, a global and conserved property, and we can therefore
expect it to stabilize globally in spite of training the NN
using a localized measurement. In order to demonstrate that
this interpretation is correct, we conducted experiments at
ALS beam line 5.3.2.2, which is the most sensitive ALS
beam line in terms of vertical beam size [18,19]. Figure 4
shows STXM scan data taken at 5.3.2.2 while ID configu-
rations in the rest of the ALS were continuously changing.
The measurement data reveals that the stabilization observed
at the diagnostic beam line can indeed also be observed in
the STXM scans at this sensitive beam line. A comparison
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FIG. 4. STXM images from ALS beam line 5.3.2.2 at 390 eV. Left: scan performed while the NN-based FF was on (0.8% rms intensity
variation). Right: scan performed without any ID motion in ALS (0.5% rms intensity variation).
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diagnostic beam line 3.1 (spikes are top-off perturbations) along
with DWP (black) and various ID vertical gap settings (light
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of Fig. 4 (left) to Fig. 1 (right) demonstrates a fourfold
reduction in noise at the STXM beam line from the NN-
based FF. These STXM measurements have also revealed
that this stabilization of low-frequency perturbations does
not occur at the expense of exciting any high-frequency
noise. Finally, Fig. 4 also reveals that the residual noise from
ID configuration changes now lies only 60% above the noise
floor of the beam line. We expect to further reduce this
residual by increasing the beam size measurement refresh
rate and consequently the NN-based FF update rate.
Online stabilization and retraining.—With the above

determined performance at the most sensitive experiments,
the NN-based FF can be put into operation during regular
user experiment runs. Several user runs employing the NN-
based FF so far have demonstrated that the vertical beam
size can be stabilized to the submicron (< 2%) rms level
over the course of many days. One key advantage of this
NN-based stabilization approach lies in the fact that data
acquisition for retraining of the NN can be continuously
carried out even while the NN-based FF is active during a
regular user run. Under online retraining we understand
continuous retraining of the NN (with machine data
affected by the online NN), effectively allowing the NN
to constantly adapt to a drifting machine, but also to
changes in the ID configuration space occupied by exper-
imenters during run periods.
Here, we demonstrate online retraining by combining

data collected during a dedicated machine shift (for which
the initial NN had been trained) with data collected during
a three-day user period with NN-based FF running. For
online retraining, the user run data was randomly down-
sampled to 1=15 of its original size to balance sample sizes.
Retraining the NN using both data sets requires just
15 minutes on a desktop-class CPU. After verifying that
predictions of the online-retrained NN better matched
measured beam sizes than those coming from the original
static NN, the FF was reconfigured to thenceforth rely on

the online-retrained NN. An example of such a run is
shown in Fig. 5. The observed level of vertical source size
stability at diagnostic beam line 3.1 over the course of
several days using the online-retrained NN is< 0.3 μm rms
(< 0.5%). This indicates a factor two improvement over
the originally applied static NN. In this case again, STXM
scans confirm that this also leads to a global stabilization of
source points (cf. Fig. 5, right). From these experiments
we conclude that online retraining ensures that source size
can be stabilized over prolonged periods of time without
requiring dedicated machine time to retrain the NN or
manual intervention by an expert. Furthermore, we recently
demonstrated that even after a several-day interruption (e.g.,
scheduled maintenance) the previously employed online-
retrained NN can upon startup again be put into FF operation
without observing a reduction in performance. Online
retraining thereafter can continue to ensure the employed
NN stays up to date. For future operation, we expect to
online retrain on the fly whenever indicated by a sustained
increase in error between NN-based beam size prediction
and online measurement beyond a predefined threshold.
Conclusion and outlook.—We have demonstrated that

machine learning can be employed to render NNs that
enable vertical source size stabilization at storage ring
light sources without requiring any new instrumentation.
This model-independent method ensures levels of stability
roughly one order of magnitude better than previously
observed using model-based FFs and FB schemes. We have
also demonstrated that such a NN-based FF remains
effective over prolonged periods of time, including shut-
down intervals, by employing online retraining. The
achieved level of source size stability results in perturba-
tions at the most sensitive experiments quickly approaching
the noise level of the end station. Furthermore, the
demonstrated submicron or subpercent level of source size
stability already today fulfills requirements for future
4GSRs, thereby allowing experiments at these new sources
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FIG. 5. Left: Beam sizes as measured at ALS diagnostic beam line 3.1 during user operations using a FF based on an online-retrained
NN (0.4% rms variation in the vertical). Right: STXM scan from ALS beam line 5.3.2.2 (0.6% rms intensity variation) recorded during
the same period.
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to fully exploit the ultrahigh brightness and transverse
coherence provided by DLSRs. In the future, we plan to
investigate if a NN-based FF can replace model-based FFs
entirely, thus freeing up on the order of 100 hours of
dedicated machine time a year, which are nowadays still
required to rerecord look-up tables. First proof of principle
experiments have been carried out and show promising
results, including the exciting possibility to extract physics
model information from a NN, e.g., deriving ID perturba-
tions from a NN trained on a machine without ID FFs.
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