
Nuclear Inst. and Methods in Physics Research, A 1050 (2023) 168192

a

b

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

Full Length Article

Demonstration of machine learning-enhanced multi-objective optimization
of ultrahigh-brightness lattices for 4th-generation synchrotron light sources
Y. Lu a, S.C. Leemann a,∗, C. Sun a, M.P. Ehrlichman a, H. Nishimura a, M. Venturini a, T. Hellert b

Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
Deutsches Elektronen Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany

A R T I C L E I N F O

Keywords:
Synchrotron light source
Storage ring
Beam dynamics
Lattice design
Multi-objective optimization
Machine learning

A B S T R A C T

Fourth-generation storage rings enabled by multi-bend achromat lattices are being inaugurated worldwide and
many more are planned for the next decade. These sources deliver stable ultra-high brightness radiation with
unmatched levels of transverse coherence by virtue of their highly advanced magnetic lattices. Optimization
of these challenging and strongly nonlinear lattices with many degrees of freedom bounded by extensive sets
of constraints and multiple often conflicting optimization goals is highly demanding and requires application
of the most advanced numerical tools available to the community. While multi-objective genetic algorithms
have been very successful in supporting these optimization efforts, the algorithms suffer from a fundamental
limitation of their stochastic nature: an exceedingly vast number of candidate lattices, most of which eventually
are rejected, has to be fully evaluated. This comes at immense computational cost and thus drives excessive
runtime despite use of large supercomputing clusters. We therefore propose to employ deep learning techniques
and iterative retraining of neural networks to massively accelerate such lattice evaluation, thereby allowing
lattice optimization to rely on far fewer a priori assumptions, open up to larger search ranges, and include right
from the start and in parallel multiple error distributions to find truly global optima, all while completing a
full optimization campaign in weeks rather than months. In this paper we present the neural network designs,
the deep learning approach, iterative retraining procedures, and demonstrate how these machine learning
techniques can be incorporated into existing state-of-the-art optimization workflows with only minimal changes
applied to the optimization pipeline itself and none at all to the employed tracking codes.
1. Introduction

Storage-ring based synchrotron light sources around the world are
presently undergoing a massive transformation. Pioneered in MAX
IV [1], the multi-bend achromat (MBA) [2] lattice has ushered in the
era of 4th-generation storage rings (4GSRs): a class of ring-based light
sources capable of delivering stable ultra-high brightness diffraction-
limited synchrotron radiation with a high degree of transverse co-
herence simultaneously to dozens of beamlines. The MBA lattice—
presently foreseen by almost every new source and upgrade project—is
composed of many small-aperture magnets with high field gradients
capable of providing the strong focusing necessary to achieve ultra-
low emittance. This strong focusing reduces the dispersion and drives
the natural chromaticity in the lattice. Combined, this calls for very
strong sextupoles leading to highly nonlinear lattices exhibiting limited
dynamic aperture (DA) and momentum aperture (MA) compared to
those of 3rd-generation light sources. Apart from the many engineering
difficulties in the design of a 4GSR, the beam physics and lattice
optimization itself present a significant challenge due to the large

∗ Corresponding author.
E-mail address: SCLeemann@lbl.gov (S.C. Leemann).

number of magnets that need to be tuned in a multi-variate and multi-
objective optimization process. Apart from lattice design expertise, this
usually calls for the most advanced numerical and analytical resources
available to the community.

Multi-objective genetic algorithms (MOGA) [3] have proven to be
one of the most successful and commonly used tools for the optimiza-
tion of modern light source lattices [4–6]. Multiple variants of MOGA
are available, among which the Pareto-based algorithm NSGA-II is the
most popular [7,8]. Optimization of an MBA lattice with MOGA is
highly non-trivial since ultra-high brightness, lifetime, and injection
efficiency are usually in direct competition and a suitable trade-off
needs to be carefully established, taking into account an exceedingly
large number of constraints. While MOGA is extremely well equipped to
undertake such optimization, it suffers from the fundamental limitation
that—as a stochastic process—it requires a vast number of candidate
lattices to be evaluated. Nonlinear lattice evaluation based on many-
turn particle tracking is very CPU-expensive and nevertheless, almost
all evaluated lattices are eventually rejected by MOGA. This weakness,
https://doi.org/10.1016/j.nima.2023.168192
Received 7 December 2022; Received in revised form 21 February 2023; Accepted
Available online 8 March 2023
0168-9002/Published by Elsevier B.V. This is an open access article under the CC B
6 March 2023

Y license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.nima.2023.168192
https://www.elsevier.com/locate/nima
http://www.elsevier.com/locate/nima
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2023.168192&domain=pdf
mailto:SCLeemann@lbl.gov
https://doi.org/10.1016/j.nima.2023.168192
http://creativecommons.org/licenses/by/4.0/


Y. Lu, S.C. Leemann, C. Sun et al. Nuclear Inst. and Methods in Physics Research, A 1050 (2023) 168192

t
c

inherent to MOGA optimization, usually calls for the lattice designer
to either a priori limit their search ranges or to make initial assump-
tions about the constitution of the volume in search space leading to
promising solutions. This, however, competes directly with the desire to
enlarge and continuously re-evaluate search space in order to maintain
sample diversity so as not to get trapped in local minima. And even
once a MOGA optimization process has led to attractive solutions, the
robustness of such solutions under perturbations—such as realistically
to be expected manufacturing, calibration, and alignment errors in the
actual as-built machine—have to be considered. Often times it would
be desirable to design right from the start for a lattice perturbed by an
at least minimal error set, but this then would call for many such error
distributions to be simulated since most such errors follow a stochastic
distribution and the exact final error set remains unknown until the
machine has been built and commissioned. However, optimizing right
from the start for a multitude of error distributions is presently not
feasible due to the vast CPU requirements for MOGA optimization of
just a single lattice. We have set out to change this.

Attempts have been made to accelerate the MOGA process by using
proxies for nonlinear properties (specific tune shifts, DA evaluation for
certain energies, etc., e.g. [9]) instead of computing exact solutions
through many-turn tracking. Others have attempted to optimize nonlin-
ear lattice properties solely based on tuning nonlinear elements in the
lattice, but without freedom to also adjust linear optics within certain
boundaries (e.g. [10]). Here we shall instead prefer to optimize directly
the relevant physics quantities by tuning linear and nonlinear magnet
families concurrently. We propose to achieve the massive acceleration
in MOGA required to do such optimization through Machine Learning
(ML) techniques involving primarily deep learning and iterative retrain-
ing. We will demonstrate how we use deep neural networks (DNNs) to
replace computationally expensive many-turn tracking, thereby allow-
ing an individual MOGA optimization to complete within hours rather
than weeks. This in turn means that parameter search ranges can be
opened up, fewer initial assumptions made and, most importantly, that
optimizations can be carried out in parallel for many different error
distributions hence ensuring that the final solution corresponds indeed
to a global optimum for all expected conditions of the as-built machine.

The application of ML to storage ring lattice optimization is not new.
There have been a couple attempts in the past, e.g. [9–12]. However,
we believe they are not entirely suitable to global optimization of
4GSR lattices—where we optimize linear and nonlinear lattice prop-
erties concurrently (i.e. search space consists of all quadrupoles and
sextupoles/octupoles in the lattice)—as we attempt to outline below.

• While we employ ML to replace tracking itself, we do not attempt
to apply it to recognize patterns in the population or regions of
the Pareto-optimal front as proposed in [11]. In order to keep this
ML-enhanced optimization as generic as possible, we prefer not
to assume that such clusters must exist in either solution or input
space. However, since our ML-enhanced optimization process is
intended to augment a conventional MOGA optimization, there is
no reason ML-enhanced MOGA cannot be combined with pattern
recognition as described in [11] when warranted due to the un-
derlying physics. In fact, for the method proposed here, adding an
additional step as suggested in [11] could be used to increase the
density of elite candidates thereby leading to a better distribution
of candidates along the Pareto-optimal front.

• Unlike the process described in [12], we are not so much inter-
ested in enlarging the MOGA population size with ML in order to
increase diversity. Throughout our optimization campaigns, we
do not see population diversity as a substantial issue as long as
we use sufficient samples per generation, we make sure to train
our DNN models on sufficiently large population sets, and we
then retrain as necessary. While [12] limits itself to training on
small numbers of samples (100× the number of input variables is
suggested), we choose a substantially larger number in order to
 −

2

ensure that DNN surrogate models are highly accurate. Naturally,
this approach comes with a CPU penalty since generation of
training data requires tracking which is computationally expen-
sive. On the other hand, accurate surrogate predictions allow
our ML-enhanced optimization to converge very quickly with a
large number of samples per generation (unlike the assumptions
made in [10]), thereby ensuring that population diversity does
not become a restriction.

• Similar to the approach suggested in [9], we also propose to use
deep learning and retraining to generate surrogate models that
are used to speed up computationally expensive particle tracking
in massively parallelized MOGA optimization. We also employ
continuous retraining to ensure that surrogate models are steadily
improved during the optimization process thereby constantly im-
proving solution quality. However, unlike [9], we suggest to
optimize directly on relevant physics quantities, i.e. instead of
relying on tune footprint or the distance to certain resonances, we
prefer to optimize directly the DA; and instead of relying on the
DA for two specific momentum deviations, we prefer to optimize
directly on MA. While this is computationally more expensive,
we consider it more reliable for lattice optimization: separation
from certain resonances or small tune shifts by themselves do not
guarantee large DA, whereas large DA is absolutely required in
order to ensure sufficient injection efficiency and lifetime. We will
show that by employing ML-enhanced optimization, the achieved
speedup over conventional many-turn tracking is several orders
or magnitude and therefore more than makes up for the added
computational effort of direct DA/MA optimization. We believe
a further advantage of our proposed method is that it does not
require changes to the tracking code. No additional properties to
serve as optimization proxies need to be calculated. Our approach
will modify the MOGA code in only a single instance: calls to the
tracking code to calculate DA and MA will be replaced by a simple
look-up call to the surrogate model.

The remainder of this paper is structured as follows: the following
section summarizes the classical MOGA approach using the ALS-U
lattice optimization as a typical example for a 4GSR. Then, Section 3
will introduce the ML modeling approach designed to replace many-
turn particle tracking used by MOGA. Section 4 describes in detail how
an ML-based MOGA workflow is constructed, relying on deep learning
and iterative retraining, and how it is kept efficient by close monitoring
of convergence. This is followed by Section 5 where results are shown
when this full ML-based MOGA workflow is applied to a 4GSR lattice
optimization, again using the ALS-U lattice as a typical 4GSR example,
thereby allowing for direct comparison with the conventional MOGA
approach. Finally, the paper concludes with a brief summary and
outlook.

2. Conventional multi-objective design of 4th-generation storage
ring lattices

In order to transform to a 4th-generation synchrotron source, the
Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory
is upgrading the existing triple-bend achromat (TBA) storage ring lat-
tice to a nine-bend achromat (9BA) lattice. The upgraded storage ring
will be constrained to within the current ALS footprint, having the same
12-fold period and nearly the same circumference. The magnet layout
for one sector is shown in Fig. 1. In order to meet requirements for
≈ 100pm rad emittance and due to severe space constraints, a pseudo-
hybrid1 type 9BA lattice with two dispersion bumps on both ends of
he central arc section is adopted for the ALS upgrade. It consists of 9
ombined-function dipoles (B1-B9), 6 focusing quadrupole (QF1–QF6)

1 The phase advance between the dispersion bumps does not constitute the
I transformer of the conventional hybrid MBA.



Y. Lu, S.C. Leemann, C. Sun et al. Nuclear Inst. and Methods in Physics Research, A 1050 (2023) 168192

Q
a
c
h
s
T
s
o
M
M
d
a

d
t
m
n
p
e
o
F
w
m
i
d
U
t
c
a
p

2

b
t
e

q
b
s
r

Fig. 1. Magnet layout of one sector of the ALS-U lattice.
D

families, 1 defocusing quadrupole (QD1) family, 2 chromatic sextupoles
(SF and SD) families inside dispersion bumps for chromaticity correc-
tion, and 2 harmonic sextupole (SH1 and SH2) families in the straight
section for nonlinear dynamics optimization. In the early design of the
lattice, not only magnet strengths but also their length and positions
were adjusted to optimize the lattice properties and to accommodate
space and engineering requirements.

After this initial design phase results in a preliminary design, the
magnet layout is fixed while only the magnet strengths are tuned. There
are a total of 11 free tuning knobs2: 9 quadrupole gradients (QF1–

F6, QD1, B1 and B2/B3) plus 2 harmonic sextupole strengths (SH1
nd SH2). The two chromatic sextupoles (SF and SD) are tuned for
hromaticity correction to +1 in both planes. The lattice optimization
as to balance competing objectives while satisfying a number of con-
traints posed by technological limitations and physics requirements.
he most basic trade-off is the one between the objectives of attaining
mall emittance vs. sufficient DA and MA. Optimization of such a multi-
bjective, multi-variable and highly constrained problem is nontrivial.
OGA is well suitable for this kind of optimization problem. The
OGA concept was introduced to the accelerator community about two

ecades ago [3–6,14,15] and is now widely used to design and optimize
ll kinds of accelerator systems.

In our initial approach to optimize the ALS-U lattices, the resonance
riving terms, amplitude dependent tune shift (ADTS) and chromatic
une spread, which do not involve intensive particle tracking, were
inimized to improve lattice properties. However, this approach did
ot by itself render entirely satisfactory results, especially for nonlinear
roperties of the lattice such as DA and MA. To this end, direct
valuations of nonlinear properties by tracking are adopted for lattice
ptimizations. MOGA has been extensively used for the optimization.
or ALS-U studies, we have relied on MOGA based on NSGA-II [7,8]
here Tracy [16] is used to calculate beam properties and perform
any-turn particle tracking for DA and MA calculations. With MOGA,

deally the initial lattice population should be uniformly and ran-
omly populated over a wide subset of the accessible parameter space.
nfortunately, because the evaluation of the nonlinear properties of

hese lattices is so time consuming, this tends to lead to a very slow
onvergence to the point of impracticality. We found that a multi-stage
pproach, as briefly described below, can considerably speed up the
rocess.

.1. Conventional MOGA optimization for ALS-U

First, we carry out the optimization for the linear properties alone,
y only varying the 9 quadruple gradients. The purpose of this step is
o narrow down the search ranges of the quadrupole gradients, thus
xcluding parameters that lead to non-physical (unstable) solutions or

2 The final ALS-U design also includes reverse bending [13] in the arc
uadrupoles which adds another three free parameters as well as high-field
end magnets with an additional two free parameters. For the purpose of this
tudy, we will, however, ignore reverse bending and high-field bends which
eflects the state of the ALS-U design efforts around 2018.
 m

3

Table 1
Constraints for ALS-U lattice optimization.

Natural emittance "0 < 155pm rad
Maximum beta �x;y < 30m
Maximum dispersion �x < 15 cm
Fractional tunes 0:1 < �x;y < 0:4
Dispersion at center of straight ð�∗x ð < 1mm
Beta at center of straight 1 m < �∗x;y < 5m
Beta in central arc bends (B3) �B3x;y < 4m
Fractional tune difference ó

ó

ó

�x − �y
ó

ó

ó

< 0:01

Chromatic sextupole strength (SF, SD) b2 < 900m−3

violate our linear property targets. Because the nonlinear properties are
not evaluated, this stage is very fast. The optimization objectives are
the natural emittance and beta functions in the straight-section mid-
points, which are directly related to the brightness of the machine,
the ultimate goal of this lattice optimization. We also set a 150 pm rad
upper-limit cut-off for the natural emittance and reject lattice solutions
with straight section beta functions larger than 3 m or less than 1 m.
Horizontal and vertical tunes are forced to be nearly identical in
anticipation of operation at coupling resonance. Instead of letting the
optimization run its full course, we monitor the evolution of the lattice
population and stop the run when we determine that the emittance
and beta functions spread over a sufficiently small, but not too narrow
range. Then, the last generation is selected as an initial population for
the next stage: linear and nonlinear lattice optimization.

In this 2nd stage, both linear and nonlinear properties of the lattice
are optimized simultaneously. The linear property objectives are the
same as before, except that beta functions are no longer optimized
but rather constrained. A full list of the applied constraints is given
in Table 1.

The nonlinear properties to be optimized are DA and MA which
are related to machine performance through injection efficiency and
Touschek lifetime. We do not directly optimize the injection efficiency
since its evaluation is very time consuming and depends on the exact
injection method. It also strongly depends on the exact longitudinal
phase space which in turn can be heavily affected by harmonic cavities;
at such an early stage in the design process we prefer not to make
assumptions about such systems yet. In practice, DA can be evaluated
either by 6D tracking to estimate DA area or by 4D tracking using
frequency map techniques to estimate the total diffusion rate [17–19].
The latter method is used in our optimization since it has been observed
to render superior lattice performance.3 The evaluation of Touschek
lifetime requires MA evaluations along the machine which is extremely
time consuming [20,21]. Instead, averaged MA at select points along
one sector is used as a proxy for Touschek lifetime. In this 2nd optimiza-
tion stage the tuning knobs consist of all 9 quadrupole gradients plus 2
harmonic sextupole strengths. The chromatic sextupoles are tuned by
fitting chromaticity to +1 in both planes during the optimization. The

3 A smaller but contiguous area of low diffusion is preferred over a larger
A that contains many areas of elevated diffusion (indicating onset of chaotic
otion) [17–19].



Y. Lu, S.C. Leemann, C. Sun et al. Nuclear Inst. and Methods in Physics Research, A 1050 (2023) 168192
Fig. 2. Pareto front resulting from 2nd stage optimization of linear and nonlinear
degrees of freedom in the ALS-U lattice (negative MA is shown here since optimization
applies a minimizer). Large negative diffusion rates are desirable. The red circle
represents the solution that was chosen in order to prioritize Touschek lifetime [23].

same constraints as used in the linear lattice optimization are again
applied here in the 2nd stage.

Both MA and DA are evaluated by including random linear gradient
and skew errors in the lattices that simulate typical residual beta
beating (2%–3%) and linear coupling (about 1%), as they are com-
monly determined in real machines after carrying out lattice calibration
and correction using orbit-response matrix analysis. Specifically, the
relative normal gradient errors with a sigma of 2 × 10−4 and skew
gradient error of 5×10−4 are applied to all quadrupoles and combined-
function dipoles. A Gaussian distribution with 2-sigma truncation is
applied when the gradient and skew errors are populated. These error
distributions are retained for the entire optimization stage and only
upon its completion, with a candidate lattice in hand, alternate error
distributions are applied and it is verified that these alternate errors
in the chosen candidate still render comparable performance to the
originally optimized lattice.

The initial population for this 2nd stage optimization is taken from
the final generation of the previous linear optimization stage along with
random sextupole gradients initially supplied to the first generation.
The behavior and convergence of MOGA can be greatly affected by the
hyperparameters of the algorithm such as probabilities and index of
mutation and crossover, which determine how much the parent and
child generations differ from each other and how frequent they should
be mutated and crossed over. We found that, for best results, different
tuning of these hyperparameters are more appropriate at different
stages of the lattice population evolution. Therefore, the optimizations
are broken down into several independent runs, where the population
generated at the end of one run is used as the initial population for
the next, and the hyperparameters are re-tuned after each run. In
the earlier runs we set higher mutation and crossover probabilities
in order to encourage the exploration over wider ranges; later on,
lower probabilities are effective to boost convergence speed. Each run
typically spawns 200 generations. With a typical population size of
5000, it usually takes about 2–3 days to complete a single run with
1000 computing cores on the ALSACC cluster, which is hosted by the
LBNL Supercluster and has a mixture of different CPU architectures
and memory configurations [22]. Usually, several runs are required
to achieve a fully converged Pareto front. Therefore, this whole op-
timization process for the 2nd stage typically takes about a week or
two.

A typical Pareto front resulting from this 2nd stage of lattice op-

timization is shown in Fig. 2. It indicates a clear trade-off between i

4

emittance, DA, and MA. Once a Pareto front has been found, lattice
solutions meeting design requirements are identified and further evalu-
ations are carried out to validate the results. In later stages, the ALS-U
lattice search is then expanded to include reverse bending and high-
field bends in three sectors (along with dedicated local QD families)
to further enhance overall lattice performance. But it is this 2nd stage
of optimization, combining linear and nonlinear lattice properties, that
the remainder of this article will focus on. Once the ML-enhanced
optimization is established, integrating ML into later stages of the
lattice optimization, possibly including additional degrees of freedom
(DoF), becomes a natural extension as the following sections will show.

3. ML-based modeling approach to enhance multi-objective de-
sign

Machine Learning has gained popularity in a wide range of fields,
not just computer science. It has proven the ability to solve many
complex problems that traditional methods cannot handle [24]. Several
ML-based methods have been proposed to improve multi-objective
lattice design [9,11,12]. However, as discussed in the Introduction, we
recognize a serious bottleneck of MOGA lies in the many-turn tracking
evaluation of the nonlinear properties of lattices which in our case
consist of DA and MA. Thus, we introduce a neural network (NN) to
serve as the surrogate model for DA and MA prediction in order to
massively accelerate MOGA thereby rendering an ML-based MOGA.
Ideally, the goal is to reduce tracking time for DA and MA calculation
from minutes per child on one core (resulting in many weeks for the
full campaign) to milliseconds for a simple NN lookup (NN prediction).

3.1. A first 2-dimensional ML-based nonlinear optimization

Early studies based on optimizing DA and MA for only two inputs
(2 harmonic sextupoles) [25] indicated that each could be modeled
well by its own NN, starting with only two fully-connected hidden
layers and later expanding to seven which rendered excellent pre-
diction quality with minimal training effort. For the two-dimensional
problem, our initial efforts on generating training data focused on
random sampling of parameter space as well as equidistant sampling
whereby the sampling density was reduced until prediction errors were
observed to start to grow. This resulted in a situation where a NN for
DA or MA prediction required only ≈13,000 samples (115 samples for
each input) for training, compared to ≈250,000 samples required for
a comparable conventional MOGA approach. Once the tracking results
for the sampled points in input space had been generated, the training
effort itself was as little as minutes on a conventional desktop CPU and
resulted in DA and MA predictions to within 1%–2% rms of typical
Pareto-optimal results. Because the training effort is so short compared
to the CPU time required for the direct MOGA optimization—even
in just two dimensions—this resulted in a direct speedup of roughly
two orders of magnitude.4 For this simple 2-dimensional input space,
the equidistant sampling of input space provided consistently lower
prediction errors from the resulting NNs compared to using MOGA data
for training.

3.2. Full 11-dimensional ML-based models

However, once the full 11-dimensional problem including all
quadrupoles needs to be modeled, generating appropriate training data
becomes much more difficult. While the 9 additional DoF are intro-
duced to the DNN simply by adding 9 fully connected inputs to the first
hidden layer, training data can no longer be generated by equidistant
sampling of the entire 11-dimensional input hypervolume. Ideally,
sampling should instead be guided by a ‘‘wise choice’’, but since the

4 A direct speedup by a factor 650 was demonstrated [25] after further
mprovements had been made to training data collection.



Y. Lu, S.C. Leemann, C. Sun et al. Nuclear Inst. and Methods in Physics Research, A 1050 (2023) 168192

t
o

s
t
e
f
5
N
h
w
t
h
o
i
a
t
i
e
l
e
c
t
D
e
m
e
t
p
m
o

s
t
a
t
d
t
(
t
t
h

a
c
i

e
d
c
a

w
o
g
s
h
g

approach presented here is designed to accommodate arbitrary lattice
optimization, we do not want to introduce too much physics-based in-
tuition. Instead, we resort to a user-independent method wherein initial
MOGA optimization lends itself to guiding which parts of the input
hypervolume need to be sampled: we employ already available data
in the form of the first few generations of conventional tracking-based
MOGA as our initial training data. The following section will include
further detail on the exact generation and selection of appropriate
training data.

For the full 11-dimensional problem of the 2nd stage lattice opti-
mization, an 8-layer fully-connected NN architecture with ReLU as the
activation function [26] was chosen resulting from extensive numerical
studies, as was the width of the individual layers (for the DNN models
used herein we have arrived at: 11, 32, 64, 128, 256, 128, 64, 32, 1).
An input size of 11 corresponds to the 11 DoF. For our ML-based MOGA
(which we will refer to as ML-MOGA), we use two DNNs implemented
in PyTorch, one to model DA and one to model MA, as a function of the
11 inputs. These DNN models for DA and MA will replace the tracking
routines used by Tracy for DA and MA evaluation in the original
racking-based MOGA (which we will refer to as Tr-MOGA). The rest
f the Tracy code and the MOGA optimizer shall remain unchanged.

As a result of thorough hyperparameter tuning studies, we set batch
ize to 128 and learning rate to 0.001 with decay rate 0.8 during
he training process. The Adam optimizer [27] is applied with 500
pochs to train the DNN models. We split the sample data into 80%
or training and 20% for test. Typical training data sizes are around
0,000 samples (for details on training data preparation, cf. Section 4).
o regularization such as dropout or early stopping was required,
owever, automatic learning rate reduction (ReduceLROnPlateau [28])
as exploited to improve training results. Several attempts were made

o inspect for possible overfitting, using various data sets and models,
owever, no overfitting could be detected. In the context of lattice
ptimization, the training data is in fact rather limited in size (unlike in
mage processing) due to the stated goal of performing as little tracking
s possible. The quick training process (it takes only several minutes to
rain a model using our DNN architecture on a common desktop CPU)
n conjunction with our choice of 500 epochs for training resulted in
ntirely satisfactory training performance. Here we employ mean abso-
ute error (MAE) as the loss rate, i.e. a measure for loss between each
lement of prediction and target. The aforementioned hyperparameter
hoices all result from hyperparameter studies aimed at minimizing
his loss. Once we have the trained models, the prediction process (a
NN look-up) takes only several ms per child. With typical DA/MA
valuation by tracking for a single child requiring on the order of
inutes, there thus exists the potential for a reduction of computational

ffort by orders of magnitude compared to conventional Tr-MOGA.5 It is
his vast speedup here that opens up the potential for evaluating huge
opulation sizes once ML-MOGA is employed, thereby ensuring that the
ulti-objective lattice optimization does not risk missing good solutions

r taking overly long to converge towards best solutions.
To better evaluate our trained models, we present two figures: Fig. 3

hows a comparison based on test data between actual DA results from
racking and DA as predicted by the DNN surrogate model. Almost
ll data lies on the diagonal with no extreme outliers. Fig. 4 shows
he distribution of DA prediction error based on test data. The error
istribution shows no systematic offset between prediction and ground
ruth. For this distribution, we calculate the root mean square error
RMSE) which is the rms difference between prediction and ground
ruth for all data in the test population. The goal of all good training is
o firstly, minimize this error for the training population once training
as converged, and secondly, to show that the RMSE also remains low

5 The CPU time per child is dominated by the time required for DA
nd MA tracking. Calculation of linear properties from one-turn maps is, by
omparison, instantaneous and therefore presents only minimal potential for
mprovement.
 t

5

Fig. 3. Comparison between actual DA from tracking and DNN prediction of DA based
on test data.

Fig. 4. Histogram of relative prediction error of the DNN surrogate model for DA
compared to the ground truth for test data (11,078 samples).

when calculated for the test data set. In the example shown here, the
RMSE is 459. To better illustrate the meaning of this error, it is helpful
to introduce the relative prediction error (RPE), in which an RMSE is
normalized by the absolute value of a near-optimal value among the
entire population.6 In this case the best observed DA is around −5:4×104
so that the RPE becomes 0.9%.7 These figures show that this DNN
surrogate model for DA performs extremely well for this test data. The
DNN model for MA is assessed in the same manner and shows similar
prediction performance.

4. Constructing an ML-based multi-objective design workflow for
4th-gen storage ring lattices

As described in Section 2.1, the first lattice optimization stage is
based on narrowing down the search ranges of the linear input param-
eters and is identical for both ML-MOGA and Tr-MOGA. Since linear

6 Normalizing with the best values of the population rather than, for
xample, using the average value at a certain generation leads to less change
ue to increasing generation number alone. Ideally, changes in the RPE reflect
hanges in prediction quality, not just population movement in objective space
s the optimization run progresses.

7 Throughout our studies, we have observed that DNN models perform
ell as surrogates for DA and MA when RPEs remain on the order of 2%
r less. Larger values can be accepted in order to reduce the amount of data
eneration required for training (since actual training time is typically very
hort compared to the time required to generate training data). On the other
and, requiring smaller PREs shows only little potential benefit since data
eneration for retraining is usually quick compared to the effort to generate
he initial training data.



Y. Lu, S.C. Leemann, C. Sun et al. Nuclear Inst. and Methods in Physics Research, A 1050 (2023) 168192

i
1

b

R
s
s
a
t
t
a
a
t
t
v
r
A
a

4

F
(
M

optics are optimized here first (and only linear optics constraints have
to be satisfied), calculations in this first stage are quick to calculate
from one-turn maps and do not require multi-turn tracking. We use
the final generation from this stage as input for the second stage
MOGA runs, in which linear and nonlinear properties of the lattice are
optimized simultaneously. For Tr-MOGA, the run then continues until
it converges.

For ML-MOGA, however, we first need to prepare sample data
to train the models. As mentioned above, with 11 DoF, it becomes
impossible to evenly and adequately sample the input hypervolume
in order to generate the required training data due to massive com-
putational cost.8 Thus we instead use the first 10 generations from
the second stage Tr-MOGA to train DNN models for use in ML-MOGA
and use the 10th generation as input for the initial ML-MOGA run.
Studies have shown that including the entire population of the first
n generations of MOGA in the training data pool typically leads to
poor accuracy of the DNN predictions. The reason for this is that on
the order of half of the training data acquired in this way contains
solutions that violate constraints (cf. Table 1), either simple constraints
on allowable optics (e.g. maximum allowable beta function in the ID
source points) or unphysical solutions (e.g. unstable solutions where
the one-turn map shows ðTr()ð > 2). However, once we remove
such candidates from the training pool, the resulting training converges
faster and leads to DNNs with lower prediction errors. When DNN
models are later retrained using tracking results from candidates in
later phases of MOGA (cf. below), there are usually only very few
constraint violations so that hardly any samples have to be removed
before retraining. The aforementioned choice of n = 10 (and including
rejection of roughly half of the samples due to violated constraints) is
of course somewhat specific to the optimization problem and requires
careful analysis. Studies have shown that n should be chosen such that
the resulting RPEs remain below ≈2%. For the ALS-U optimization case,
n = 10 represents a good compromise between runtime and sufficiently
accurate DNN predictions for DA and MA. Note, the required tracking
effort for n = 10 compares very favorably to the almost 650 generations
required for traditional Tr-MOGA to converge in this 2nd stage.

4.1. First application of ML to MOGA

With training data extracted from the first 10 generations of conven-
tional Tr-MOGA, DNN surrogate models for DA and MA are rendered
showing RPEs on the order of 1%–2%. Equipped with such high pre-
diction accuracy, we convert these DNN models with TorchScript via
tracing and serializing script modules [29] so that they can then be used

8 In the original 2-dimensional nonlinear optimization example mentioned
n Section 3, each input dimension was evenly sampled in 115 steps. For the
1-dimensional problem, a similar sampling would result in almost 5 × 1022

grid points that would require evaluation by tracking in order to generate a
first batch of training data. If, on the other hand, training data were restricted
to 100,000 samples to be tracked, this would allow for less than 3 samples
per input.
 t

6

by MOGA in lieu of the Tracy DA and MA tracking routines (effectively
translating the DNN from a training environment in Python to C++
for direct use in MOGA). The CPU time required for each child, which
in conventional MOGA is dominated by the effort to perform tracking
for DA and MA calculation, is drastically sped up due to the near-
instantaneous DNN lookup. Equipped in this manner, the ML-MOGA
optimization can be run until it converges. However, one drawback
of such an approach is that the DNN surrogate model is based on
just the initial MOGA generations, which cover only a limited region
in input parameter space and most certainly, unless in the case of a
very fortunate coincidence, not the part of input space that leads to
Pareto-optimal solutions. These DNN models have no prior knowledge
of the rest of parameter space and as the optimizer converges towards
Pareto-optimal solutions, prediction errors will grow if the relevant
input parameter space cannot be re-sampled in the vicinity. While
DNNs have shown excellent performance in terms of interpolation
in quasi-smooth distributions, they cannot be expected to extrapolate
well beyond the input space they were trained on, and most certainly
they will fail at extrapolation when the input subvolume associated
with Pareto-optimal solutions is disjoint and/or fractal in nature. As
an illustration of this problem, Fig. 5 shows the outcome of a first
ML-MOGA run for the ALS-U optimization after it has converged (at
generation 732), in comparison to the corresponding conventional Tr-
MOGA run (converged at generation 643) based on the same initial
population and input variable constraints. Despite both runs showing
clear progress from the initial population towards optimal solutions,
and despite final generations showing non-dominated solutions only
(rank = 1), ML-MOGA in its converged state does not match the results
ased on tracking.

An additional problem stems from the fact that despite very low
PEs, as the optimization approaches the Pareto-optimal front, very
mall differences in output (by e.g. prediction error) can lead to sub-
tantial changes in the ranking MOGA applies to all children within
generation, thereby affecting the breading of future generations, and

hus convergence towards the Pareto-optimal front. In order to alleviate
his deficiency, we introduce a single tracking step once ML-MOGA
ppears to have converged (cf. next Section). This tracking step delivers
ccurate values for DA and MA of the final ML-MOGA generation and
hus it serves as a validation step. This validation step therefore comes at
he runtime expense of one additional generation of tracking. Once the
alidation results have been computed, each sample’s rank needs to be
e-evaluated, since exact solutions will no longer all be non-dominated.
n example for this is shown in Fig. 6 where all rank-1 solutions of the
forementioned final ML-MOGA generation are displayed.

.2. Retraining & iterative applications of ML to MOGA

Despite solutions in the validated final ML-MOGA population (cf.
ig. 6) corresponding to those of the conventional Tr-MOGA results
cf. Fig. 5, left), there are regions of input space that are not covered by
L-MOGA and hence its objective space distribution does not extend all
he way to (and match) the Pareto-optimal front derived by Tr-MOGA.
Fig. 5. Comparison in objective space between conventional Tr-MOGA run (left) and converged initial run of ML-MOGA with DNNs trained on first 10 generations of the Tr-MOGA
run (middle). Note that both MOGA runs were seeded with the same initial population (right). Negative MA is displayed here since optimization relies on a minimizer.



Y. Lu, S.C. Leemann, C. Sun et al. Nuclear Inst. and Methods in Physics Research, A 1050 (2023) 168192

a
i
n
c
o
d

n
d
i
E

�

M

w

�

a
o
b
t
o
t

Fig. 6. Objective space plot for the validated rank-1 solutions of the final generation
of the converged initial run of ML-MOGA. Input variables related to this distribution
are identical to those of Fig. 5 (middle).

Final ML-MOGA input distributions are close to the final Tr-MOGA
input distributions, but they are not yet identical. This does not really
come as a surprise, however, considering that the data used for training
the DNNs employed by ML-MOGA was derived from only the earliest
generations of the optimization, which did not yet include those areas
leading to the best solutions, let alone with dense sampling. In order
to overcome this limitation, we set out to retrain our DNN surrogate
models by combining the original training data with the data acquired
from tracking during the validation step.9 This allows the models to be
updated with solutions approaching the Pareto-optimal front, thereby
giving them better predictive capabilities in the vicinity of the areas
of parameter space we are most interested in, while at the same time
coming at near-zero computational cost. The expense of tracking a
single generation has already been accrued, so that the only additional
CPU time consists of the retraining of the two DNN models. And since
training of the DNN models is very quick compared to the effort to
perform tracking for one generation, this presents very little overhead.

Once the DNN surrogate models have been retrained on one ad-
ditional generation of input data, they can again be inserted into an
ML-MOGA run which takes the final generation of the first run as seed
and optimizes it until it again converges. At this point, a validation step
can be repeated and the DNNs can be retrained again. We recognize
this allows for an iterative process until, ideally, the overall ML-MOGA–
validation–retraining process converges, resulting in a generation that,
when validated with tracking, confirms the Pareto-optimal front has
been reached. The details of this iterative process shall be the topic of
Section 5.

4.3. Convergence and distance metrics

Crucial to designing such an iterative workflow is the definition
of distance metrics in input and output space that can be used to
assess convergence of ML-MOGA, and progress made from retraining
the DNNs and launching an additional ML-MOGA run. Since in reg-
ular use, no Tr-MOGA campaign already exists to define what the
true Pareto-optimal front is, we need to rely on a process using ML-
MOGA data alone to determine when the overall iterative process has

9 This is similar to what was proposed in [30], but note that here, we
re dealing with a class of problems characterized by high dimensionality of
nput space (due to the global and concurrent optimization of the linear and
onlinear lattice) as well as the resulting discontinuities in the input subspace
orresponding to optimized solutions, and hence, we cannot anticipate smooth
r evenly populated Pareto-optimal fronts. Instead, we will pick up solutions
istributed throughout the entire Pareto-optimal front for retraining.
7

asymptotically reached a stable final state. It is important here to note
that since every iteration requires retraining of the DNN surrogate
models and that in turn requires a full generation of inputs has to be
tracked at significant computational expense, it is of utmost importance
to determine how many such iterations are actually necessary and at
which point retraining no longer leads to a significant improvement.

As such distance metrics, we introduce two Euclidean norms, one
each for input and output space, respectively. The first metric, �i(m)
describes for generation m how far inputs have been shifted through
input hypervolume since generation m − 1. Since for each variable we
ormalize this movement with the overall range of this variable in its
imension of input space, the relative distances can be summed result-
ng in one overall relative measure of movement in input hypervolume.
q. (1) shows this distance metric for input variables.

i(m) =
1

n(n − 1)

n
É

j=1

n
É

k=1

y

x

x

x

x

w

N
É

l=1

‘

r

r

p

a(m)jl − a(m−1)kl

cl

a

s

s

q

2

: (1)

Here, we assume there are n children per generation, N dimensions
in input space, and a(m)jl is input variable l of child j in generation m.
Similarly, a(m−1)kl is input variable l of child k from previous generation
m−1. Finally, cl is the parameter range of variable l from the first MOGA
stage as mentioned above.

For the distance metric in output space (objective space), we again
wish to employ a unit-free metric that contains all objectives in one
scalar norm. For this purpose, we introduce a ‘‘golden target’’ which
presents a quasi-optimal solution for each objective by itself as if it were
unconstrained by other competing objectives. This choice leaves some
freedom to the lattice designer: studies have shown that an aggressive
but not entirely unrealistic choice of these values is most beneficial.
For the case of the so far discussed ALS-U lattice optimization, we have
arrived at a target emittance "0 = 90pm rad, target MA of M0 = 3%, and
target DA D0 = −60; 000. We then define the distance metric for output
space in generation m as �o(m) such that we record the movement of
the population at generation m towards this golden target. Since the
movement in each dimension of objective space can be normalized
by the golden targets serving as a reference value,10 this metric can be
applied equally to both Tr-MOGA and ML-MOGA. In fact, it provides for
a direct comparison as long as the reference values remain unchanged.
Changing the reference values does not by itself affect determination
of convergence, however, since for this purpose, the change of �i;o(m) is
observed, not its absolute value (cf. below). Eq. (2) shows the distance
metric for the objective variables emittance, DA, and MA compared to
the chosen reference values {"0; D0;M0} presenting ideal target values.

�o(m) =
1
n

y

x

x

w

n
É

j=1

L

0 "mj − "0
"0

12
+

0Dmj −D0

D0

12

+
0Mmj −M0

M0

12M

(2)

Here Dmj is the DA of child j in generation m and similarly for MA,
mj , and emittance, "mj .
While absolute values of �i;o as a function of m present limited value,

e can consider

�i;o(m) ⟶ 0; for m ‚ 1 (3)

n indication of convergence of the MOGA run. When the derivative
f these metrics approaches zero, we know that firstly, the input distri-
utions are no longer being substantially shifted from one generation
o the next and secondly (or consequentially), that distributions in
bjective space are no longer being further advanced in direction of
he golden target values by adding additional generations. Calculation

10 This reference value is similar to the ? suggested in [12], but here we rely
on a golden target instead of best non-dominated front, and we normalize in
each objective dimension such that the metric becomes useful for comparisons
across multiple generations or among different optimization algorithms.




	Demonstration of machine learning-enhanced multi-objective optimization of ultrahigh-brightness lattices for 4th-generation synchrotron light sources
	Introduction
	Conventional Multi-Objective Design of 4th-Generation Storage Ring Lattices
	Conventional MOGA Optimization for ALS-U

	ML-Based Modeling Approach to Enhance Multi-Objective Design
	A First 2-Dimensional ML-Based Nonlinear Optimization
	Full 11-Dimensional ML-Based Models

	Constructing an ML-based Multi-Objective Design Workflow for 4th-gen Storage Ring Lattices
	First Application of ML to MOGA
	Retraining & Iterative Applications of ML to MOGA
	Convergence and Distance Metrics

	Application of the ML-based Multi-Objective Workflow to the ALS-U Lattice Case
	Convergence of Iterative Applications of ML-MOGA
	Iterative Application of ML-MOGA for Optimization of the ALS-U Lattice
	Comparison of ML-MOGA Results to Conventional MOGA Results
	Numerical Stability and Physics Fidelity of the ML-MOGA Optimization Approach

	Conclusion & Outlook
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


