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• Top-of	keeps	ALS	stored	current	variation	<0.2%
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Many	Successful	Efforts	to	Stabilize	Electron	Beams
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• Top-of	keeps	ALS	stored	current	variation	<0.2%

• At	low	energy,	ALS	strongly	affected	by	ID	
imperfections	&	continuously	changing	EPU 
gaps/phases

–Orbit	feedback	and	ID	feed-forwards 
stabilize	source	positions/angles	to 
sub-micron	level	at	many	tens	of	Hz
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• Top-of	keeps	ALS	stored	current	variation	<0.2%

• At	low	energy,	ALS	strongly	affected	by	ID	
imperfections	&	continuously	changing	EPU 
gaps/phases

–Orbit	feedback	and	ID	feed-forwards 
stabilize	source	positions/angles	to 
sub-micron	level	at	many	tens	of	Hz


– ID	feed-forwards	&	tune	feedback	stabilize	
optics	at	source	points


– ID	skew	feed-forwards	stabilize	source	size

• require	recording	lookup	tables	(time	consuming)

• tables	are	imperfect	and	machine	drifts	over	time
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Thermal,	Ground,	Water	Table,	etc.
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The	Problem:	Beam	Size	vs.	ID	Motion

• Nevertheless,	during	routine	user	ops	observe	vertical	source	size	
variations	when	ID	configurations	change 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Traditionally	3rd-gen.	sources	considered	<10%	acceptable,	but...
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≈4%	source	size	variation

PRL	123,	194801	(2019)

ALS	Diagnostic	Beamline	3.1

SR	from	1st	arc	dipole	("round	beam")	➔	
KB	mirrors	➔	C	filter	➔	1-3	keV	x-rays	➔	
LYSO	scintillator	crystal	➔	visible	➔	CCD

Rev.	Sci.	Instrum.	67,	3368	(1996)

https://doi.org/10.1103/PhysRevLett.123.194801
https://doi.org/10.1063/1.1147369
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How	this	Problem	Affects	Sensitive	Experiments

• Vertical	source	size	fluctuations	show	up	as	intensity	
variations	at	highly	sensitive	beamlines,	such	as	the	
STXM	at	ALS	beamline	5.3.2.2


– STXM	zone	plate	focal	length	≈1	mm	➔	no	independent	&	
reliable	I0	measurement


– Very	small	spot	size	in	focus	(>20	nm	➔	scan	>10×10	μm2)


– Fast	raster	scanning	for	differential	measurements	➔	no	
averaging	(≈1	ms/pixel,	1	s/line,	6	min/scan)


–Monochromator	plane	is	H	➔	V	source	size	fluctuations	
directly	affect	experimental	noise	floor 

• 4th-gen.	sources	such	as	ALS-U	will	be	equipped 
with	many	more	such	highly	sensitive	beamlines:	
STXM,	XPCS,	ptychography,	etc.
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during	user	ops

3.2%	variation

no	ID	motion

0.5%	variation

PRL	123,	194801	(2019)

https://doi.org/10.1103/PhysRevLett.123.194801


• Why	use	Machine	Learning	(ML)	to	attack	this	issue?

– ML	can	model	highly	nonlinear	processes	and	is	extremely	flexible


– ML	can	substantially	outperform	conventional	fitting	(polynomial	regression)


– ML	does	not	require	a	priori	understanding	underlying	physics	(e.g.	machine	
drift)	➔	but	allows	extracting	valuable	system	information	a	posteriori


• ML	requires	reproducible	events	➔	confirmed	in	experiments

• ML	ideally	requires	large	data	sets	for	training	➔	ALS	digital	control	
system	can	provide	that 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We	Need	to	Solve	This	Problem	at	the	Source
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• Why	use	Machine	Learning	(ML)	to	attack	this	issue?

– ML	can	model	highly	nonlinear	processes	and	is	extremely	flexible


– ML	does	not	require	a	priori	understanding	underlying	physics	(e.g.	machine	
drift)	➔	but	allows	extracting	valuable	system	information	a	posteriori


– ML	can	substantially	outperform	conventional	fitting	(polynomial	regression)


• ML	requires	reproducible	events	➔	confirmed	in	experiments

• ML	ideally	requires	large	data	sets	for	training	➔	ALS	digital	control	
system	can	provide	that 

• First	example:	offline	analysis	of	user	ops	data

– 26	ID	parameters	("input")	➔	predict	V	beam	size	@	BL3.1	("output")


– Recorded	8	Msamples	@	10	Hz	➔	6	Msamples	used	for	training,	2	Msamples	for	
validation	➔	training	took	30	min	on	powerful	GPU
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We	Need	to	Solve	This	Problem	at	the	Source
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Last Update: Fitting Result

The fitting result using model with three fully connected layers [128, 64, 32]
gives decent YAVERMS prediction:

There are 6000000 data points in the training dataset and 1000000 in evaluation.

MSE: 0.0230 MSE: 0.0232 Courtesy:	S.	Liu

Prediction	within	0.3%	
of	measured	beam	size
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From	Prediction	to	Correction

• Introduced	"dispersion	wave	parameter"	(DWP)	to	modify	standard	
ALS	dispersion	wave	(skew	quadrupole	excitation	pattern)	➔	allows	
adjusting	vertical	emittance	(global	conserved	quantity) 
 
 
 
 

• Observed	varying	ID	configurations	affect 
primarily	vertical	dispersion	➔	εy


• Can	therefore	stabilize	beam	size	globally	by 
adjusting	DWP
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How	a	Neural	Network	(NN)	Works
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Deep	Learning:	How	we	Trained	the	NN
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Input Layer: ID settings (22-35 Dimension) 
and DWP (1 Dimension)

Three Hidden Fully Connected Layers: 
128, 64, 32 neurons in each layer

Output Layer: Vertical Beam Size (1 
Dimension)


Regularization: L2 regularizer with λ = 10-4

Optimization: Adam Optimizer with learning 
rate α = 10-3

Different Architectures 
 

Raw Data With Square Features 
Architecture Training MSE Evaluation MSE Training MSE 

 
Evaluation MSE 

 
128-64 0.0265 0.0268 0.0257 0.0260 
256-64 0.0243 0.0245 0.0259 0.0262 

512-128 0.0243 0.0247 0.0243 0.0247 
128-64-32 0.0238 0.0242 0.0243 0.0245 

256-128-64 0.0236 0.0240 0.0240 0.0246 
256-128-64-32 0.0245 0.0249 0.0245 0.0248 

The fitting becomes much better when have two layers and three layers. However, we 
cannot get better results if we have more nodes each layer and/or add more layers. 
Some errors are not reducible. In this case, adding square feature does not help for 
prediction. The deep neural network can learn the useful information similar as square 
features. 15	

Insertion Device (ID) 

Settings

Dispersion Wave

Parameter (DWP)

Beam Size

PRL	123,	194801	(2019)

OutputInput
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Skews
σy

Training

NN
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Physics	Shift:	Data	Collection	for	NN	Training

• Training:	measure	beam	sizes	&	scan	DWP	while	also	scanning	ID	
configurations	➔	acquire	data	at	10	Hz	➔	input	for	training	of	NN	(DL)


• Result	of	DL	is	prediction	for	DWP	required	to	keep	beam	size	
constant	for	arbitrary	ID	configurations	➔	run	as	NN-based	ID	FF
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Example	from	11	h	training	@	500	mA	top-of

DWP
±0.06	units

σy

±4.75	μm

48	μm

Scanning	ID	gaps	(and	shifts)

σx

PRL	123,	194801	(2019)

https://doi.org/10.1103/PhysRevLett.123.194801
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Resulting	NN	Enables	ID	Feed-Forward	at	≈3	Hz
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Physics	Shift:	Running	NN-based	ID	Feed-Forward

• Training:	measure	beam	sizes	&	scan	DWP	while	also	scanning	ID	
configurations	➔	acquire	data	at	10	Hz	➔	input	for	training	of	NN	(DL)


• Result	of	DL	is	prediction	for	DWP	required	to	keep	beam	size	
constant	for	arbitrary	ID	configurations	➔	run	as	NN-based	ID	FF
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Scanning	ID	gaps	(and	shifts)

FF	of

FF	on

Evaluation	@	500	mA	top-of

48	μm
DWP

σy

7.5	μm	p-p	(15%)

1.5	μm	rms	(3%)

1.9	μm	p-p	(4%)	

0.2	μm	rms	(0.4%)

Training	required	≈15	min	on	single	core

σx

PRL	123,	194801	(2019)

https://doi.org/10.1103/PhysRevLett.123.194801
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Physics	Shift:	Running	NN-based	ID	Feed-Forward

• Training:	measure	beam	sizes	&	scan	DWP	while	also	scanning	ID	
configurations	➔	acquire	data	at	10	Hz	➔	input	for	training	of	NN	(DL)


• Result	of	DL	is	prediction	for	DWP	required	to	keep	beam	size	
constant	for	arbitrary	ID	configurations	➔	run	as	NN-based	ID	FF
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Scanning	ID	gaps	(and	shifts)

FF	of

FF	on

Evaluation	@	500	mA	top-of

48	μm
DWP

σy

7.5	μm	p-p	(15%)

1.5	μm	rms	(3%)

1.9	μm	p-p	(4%)	

0.2	μm	rms	(0.4%)

σx

STXM	images	BL	5.3.2.2	(D.	Shapiro	&	M.	Marcus)

FF	of

3.2%	variation

FF	on

0.8%	variation

no	ID	motion

0.5%	variation

PRL	123,	194801	(2019)

https://doi.org/10.1103/PhysRevLett.123.194801
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First	Operation	During	User	Ops:	Stabilization	Confirmed
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User	Ops	@	500	mA	top-of

σy

ID	gaps	&	shifts	moving	during	user	ops 
(only	subset	shown	here)

σx

0.42	μm	rms	(0.8%)

DWP	=	FF	action	on	dispersion	wave

0.18	μm	rms	(0.3%)

PRL	123,	194801	(2019)

https://doi.org/10.1103/PhysRevLett.123.194801
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First	Operation	During	User	Ops:	Stabilization	Confirmed
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User	Ops	@	500	mA	top-of

σy

ID	gaps	&	shifts	moving	during	user	ops 
(only	subset	shown	here)

σx

0.42	μm	rms	(0.8%)

DWP	=	FF	action	on	dispersion	wave

0.18	μm	rms	(0.3%)

Stepping	related	to	two	EPUs	—	one	
not	included	in	original	training

3.5	μm	(7%)

PRL	123,	194801	(2019)
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First	Operation	During	User	Ops:	Stabilization	Confirmed
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User	Ops	@	500	mA	top-of

σy

ID	gaps	&	shifts	moving	during	user	ops 
(only	subset	shown	here)

σx

0.42	μm	rms	(0.8%)

DWP	=	FF	action	on	dispersion	wave

0.18	μm	rms	(0.3%)

Stepping	related	to	two	EPUs	—	one	
not	included	in	original	training

3.5	μm	(7%)

PRL	123,	194801	(2019)
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Online	Retraining:	Improve	NN	with	User	Ops	Data

19

Scanning	during 
Acc	Phys	Shif

Neural	Network

(Predictive	Model)

User	Ops

Training Feed-Forward

So	far:	"Conventional"	Machine	Learning

PRL	123,	194801	(2019)
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Online	Retraining:	Improve	NN	with	User	Ops	Data

20

Online	Retraining

Online	Retraining:	apply	user	ops	data	to	improve	NN	➔	swap	NN	used	for	ID	FF	on	the	fly

NN	can	be	continuously	online	retrained	during	user	ops	to	improve	FF	performance

(exploiting	huge	amounts	of	data	acquired	during	user	ops)

PRL	123,	194801	(2019)

Scanning	during 
Acc	Phys	Shif

Neural	Network

(Predictive	Model)

User	Ops

Training Feed-Forward
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Substantial	Improvement	After	Online	Retraining
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User	Ops	@	500	mA	top-of

σy

ID	gaps	&	shifts	moving	during	user	ops 
(only	subset	shown	here)

σx
0.20	μm	rms	(0.4%)

DWP

0.16	μm	rms	(0.3%)

Online	Retrained	NN	in	FF	Ops

NN-based	FF	of

PRL	123,	194801	(2019)
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User	Ops	@	500	mA	top-of

σy

ID	gaps	&	shifts	moving	during	user	ops 
(only	subset	shown	here)

σx
0.20	μm	rms	(0.4%)

DWP

0.16	μm	rms	(0.3%)

Online	Retrained	NN	in	FF	Ops

NN-based	FF	of

PRL	123,	194801	(2019)

NN-based	FF	on

0.6%	variation
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Summary:	NN-based	FF	Off	vs.	On	During	User	Ops
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NN-based	FF	of

NN-based	FF	on

User	Ops	@	500	mA	top-of

User	Ops	@	500	mA	top-of

0.93	μm	rms	(1.8%)

0.20	μm	rms	(0.4%)

σy

σx

σy

σx

FF	action

ID	phase	switching

PRL	123,	194801	(2019)
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Thank	You!


Questions?
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