

Machine Learning-based Beam Size Stabilization

Simon C. Leemann

ALS Accelerator Physics, ATAP & ALS Divisions, Lawrence Berkeley National Laboratory Sep 17, 2020

IBIC 2020 – 9th International Beam Instrumentation Conference (Remote), Sep 14-18, 2020

Many Successful Efforts to Stabilize Electron Beams

• **Top-off** keeps ALS stored current variation < 0.2%



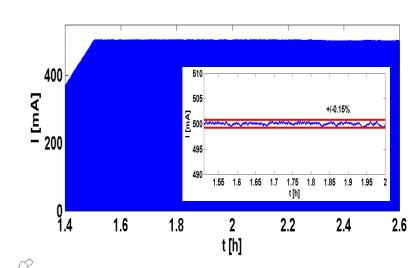
Courtesy: C. Steier, PAC'09

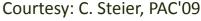
Many Successful Efforts to Stabilize Electron Beams

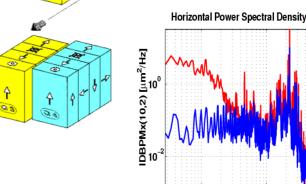
• **Top-off** keeps ALS stored current variation < 0.2%

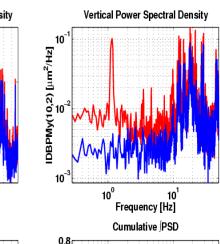
 At low energy, ALS strongly affected by ID imperfections & continuously changing EPU gaps/phases

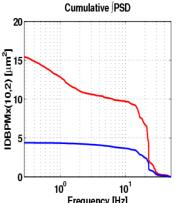
 Orbit feedback and ID feed-forwards stabilize source positions/angles to sub-micron level at many tens of Hz



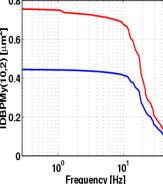






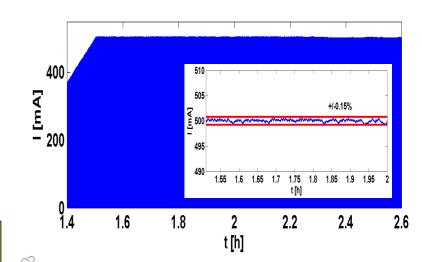


Frequency [Hz]

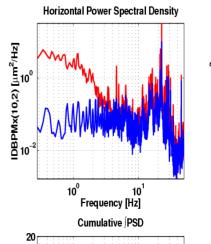


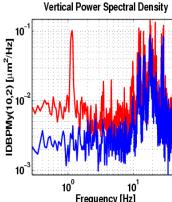
Many Successful Efforts to Stabilize Electron Beams

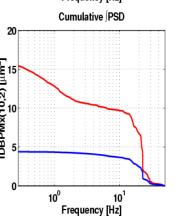
- **Top-off** keeps ALS stored current variation < 0.2%
- At low energy, ALS strongly affected by ID imperfections & continuously changing EPU gaps/phases
 - Orbit feedback and ID feed-forwards stabilize source positions/angles to sub-micron level at many tens of Hz
 - ID feed-forwards & tune feedback stabilize optics at source points
 - ID skew feed-forwards stabilize source size
 - require recording lookup tables (time consuming)
 - tables are imperfect and machine drifts over time

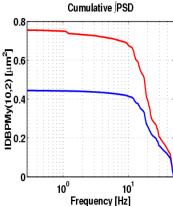


Courtesy: C. Steier, PAC'09





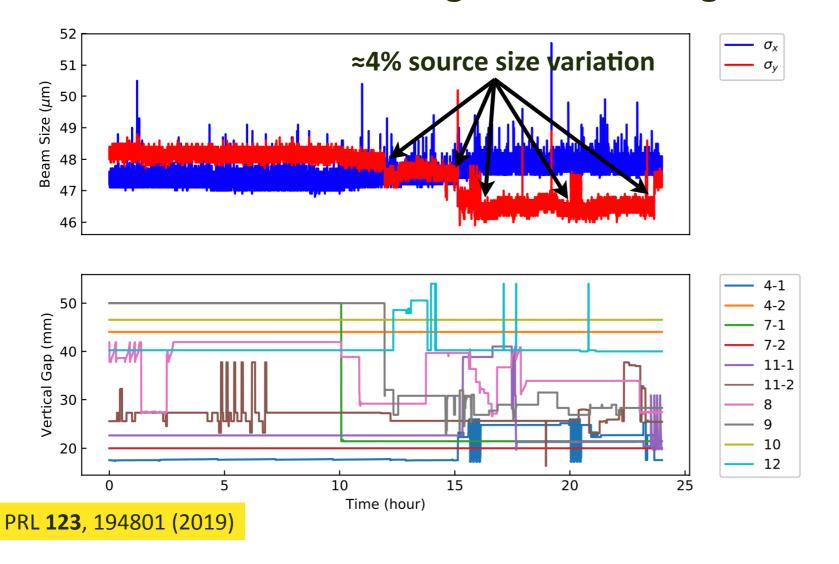




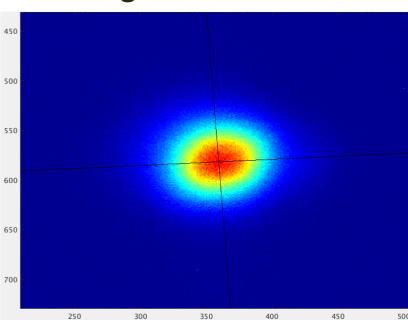
Thermal, Ground, Water Table, etc.

The Problem: Beam Size vs. ID Motion

 Nevertheless, during routine user ops observe vertical source size variations when ID configurations change



ALS Diagnostic Beamline 3.1



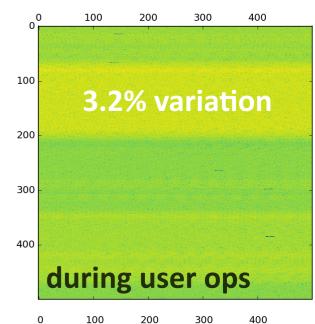
SR from 1st arc dipole ("round beam") →
KB mirrors → C filter → 1-3 keV x-rays →
LYSO scintillator crystal → visible → CCD

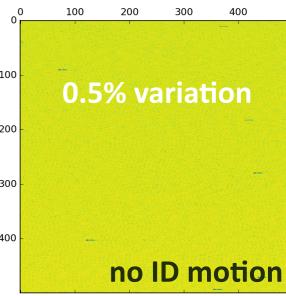
Rev. Sci. Instrum. 67, 3368 (1996)

• Traditionally 3rd-gen. sources considered <10% acceptable, but...

How this Problem Affects Sensitive Experiments

- Vertical source size fluctuations show up as intensity variations at highly sensitive beamlines, such as the STXM at ALS beamline 5.3.2.2
 - STXM zone plate focal length ≈1 mm → no independent & reliable I₀ measurement
 - Very small spot size in focus (>20 nm → scan >10×10 μm²)
 - Fast raster scanning for differential measurements → no averaging (≈1 ms/pixel, 1 s/line, 6 min/scan)
 - Monochromator plane is H → V source size fluctuations directly affect experimental noise floor
- 4th-gen. rings such as ALS-U will be equipped with many more such highly sensitive beamlines: STXM, XPCS, ptychography, etc.





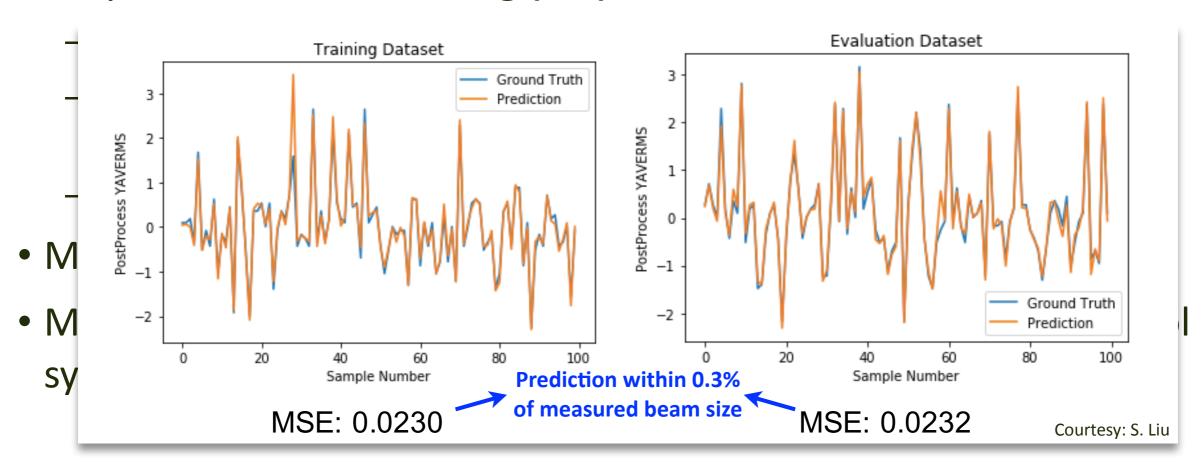
PRL **123**, 194801 (2019)

Need to Solve This Problem at the Source

- Why use Machine Learning (ML) to attack this issue?
 - ML can model highly nonlinear processes and is extremely flexible
 - ML does not require a priori understanding underlying physics (e.g. machine drift) → but allows extracting valuable system information a posteriori
 - ML can substantially outperform conventional fitting (polynomial regression)
- ML requires reproducible events → confirmed in experiments
- ML ideally requires large data sets for training → ALS digital control system can provide that

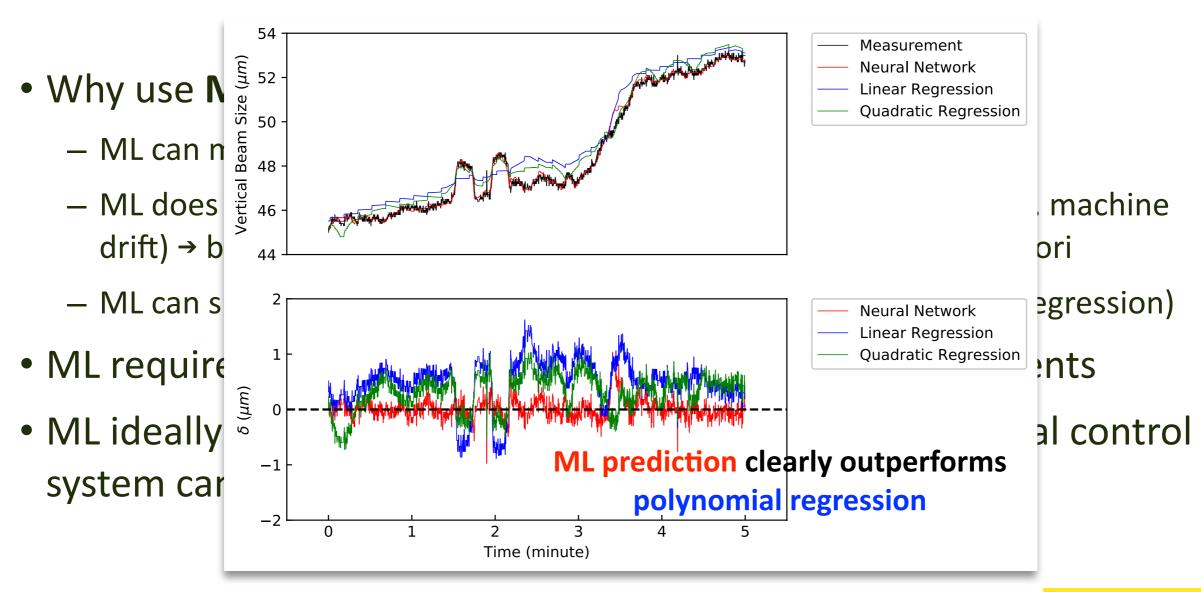
Need to Solve This Problem at the Source

Why use Machine Learning (ML) to attack this issue?



- First example: offline analysis of user ops data
 - 26 ID parameters ("input") → predict V beam size @ BL3.1 ("output")
 - Recorded 8 Msamples @ 10 Hz → 6 Msamples used for training, 2 Msamples for validation → training took 30 min on powerful GPU

Need to Solve This Problem at the Source

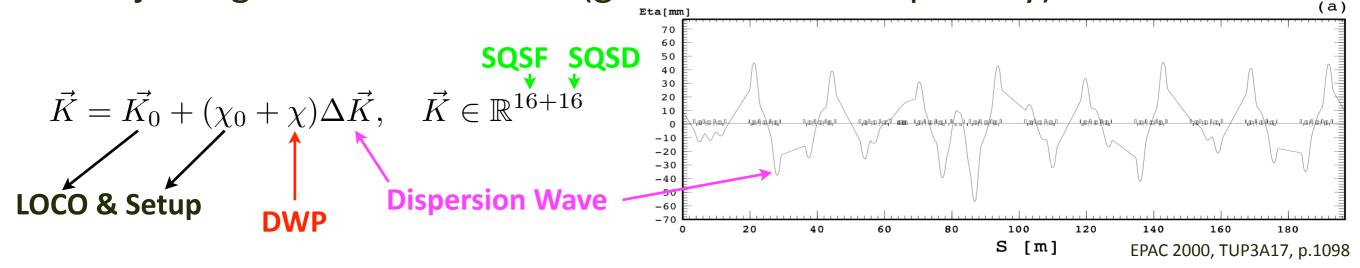


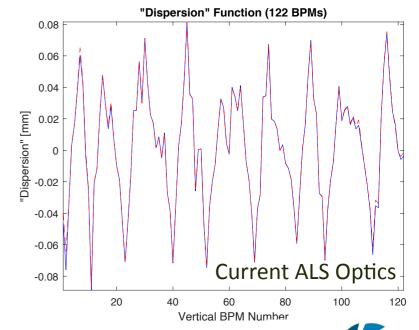
First example: offline analysis of user ops data

- PRL **123**, 194801 (2019)
- 26 ID parameters ("input") → predict V beam size @ BL3.1 ("output")
- Recorded 8 Msamples @ 10 Hz → 6 Msamples used for training, 2 Msamples for validation → training took 30 min on powerful GPU

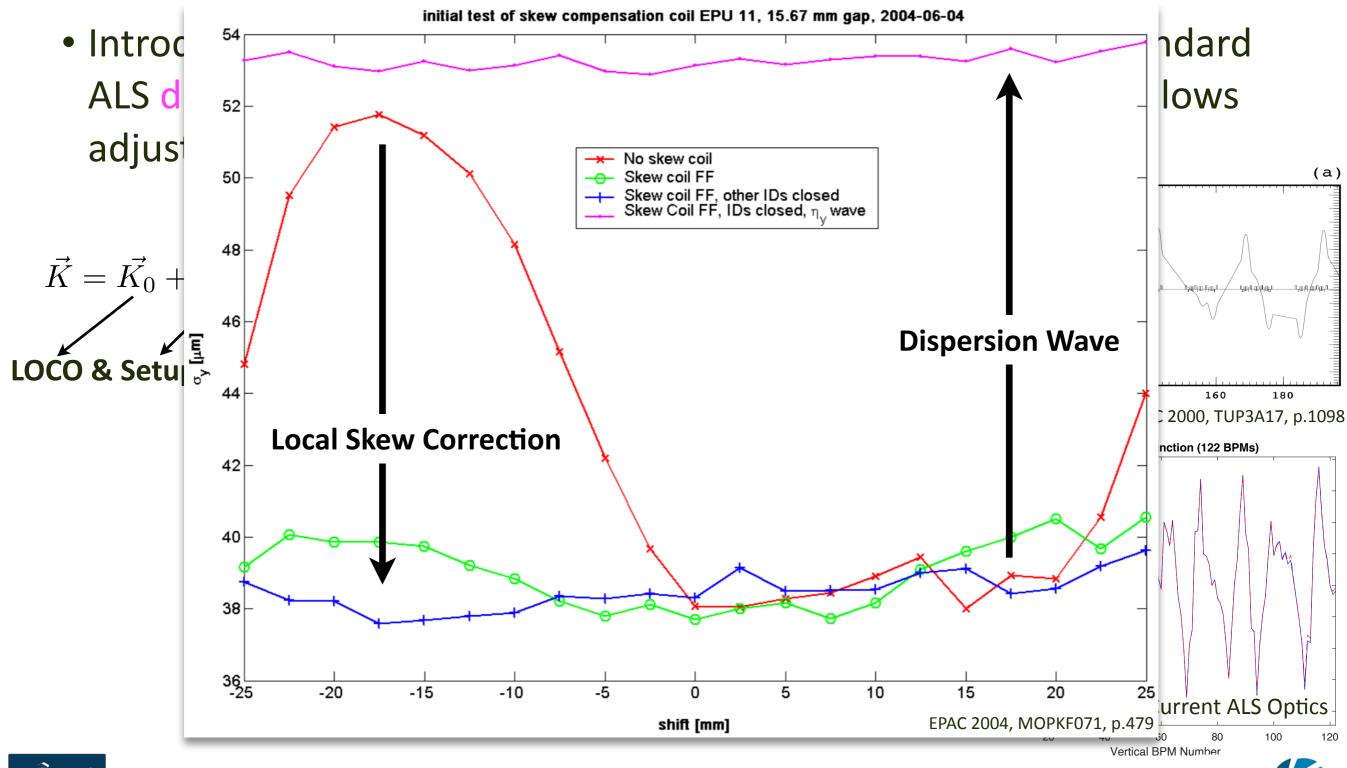
From Prediction to Correction

 Introduced "dispersion wave parameter" (DWP) to modify standard ALS dispersion wave (skew quadrupole excitation pattern) → allows adjusting vertical emittance (global conserved quantity)



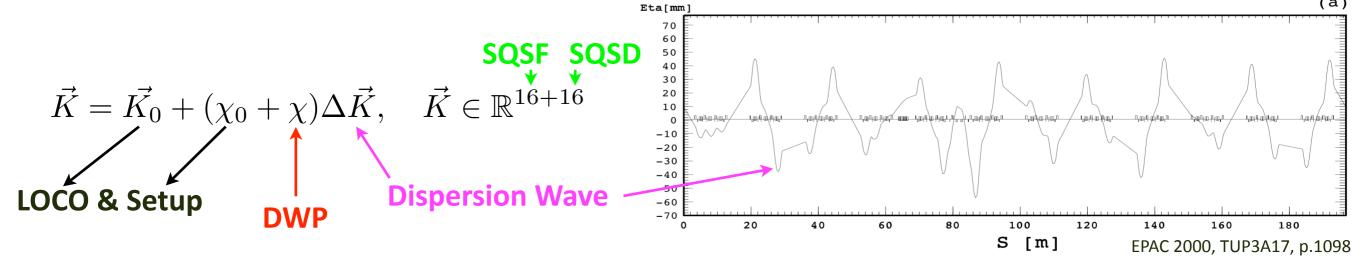


From Prediction to Correction (cont.)

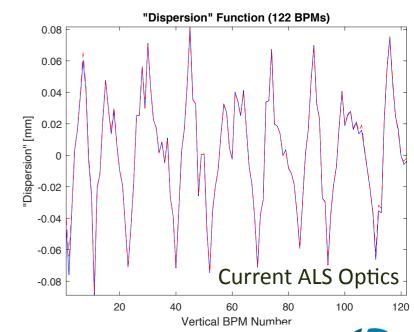


From Prediction to Correction (cont.)

 Introduced "dispersion wave parameter" (DWP) to modify standard ALS dispersion wave (skew quadrupole excitation pattern) → allows adjusting vertical emittance (global conserved quantity)



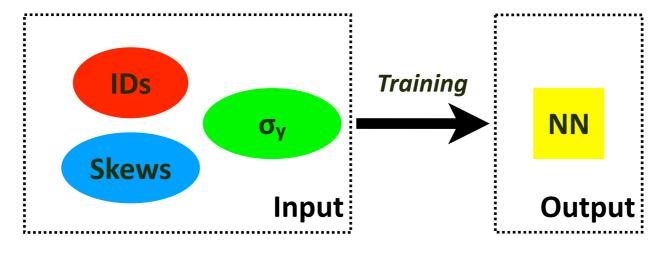
- Observed varying ID configurations affect primarily vertical dispersion $\rightarrow \epsilon_y$
- Can therefore stabilize beam size globally by adjusting DWP



Building a NN-based ID Feed-Forward

 Training: measure beam sizes while scanning DWP & various ID configurations → acquire data at 10 Hz → input for *training* of NN (DL)

Deep Learning



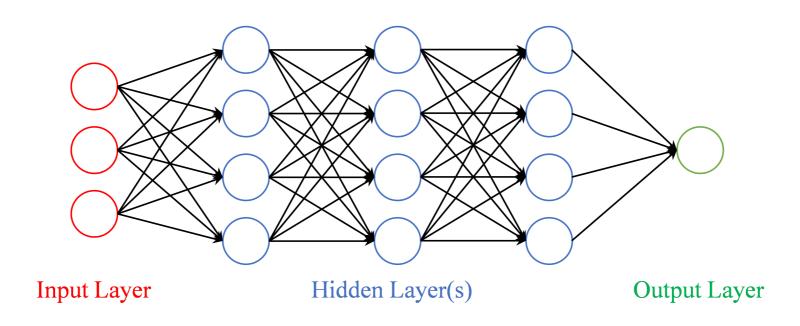
 Requires only large amounts of data & reproducibility

Building a NN-based ID Feed-Forward

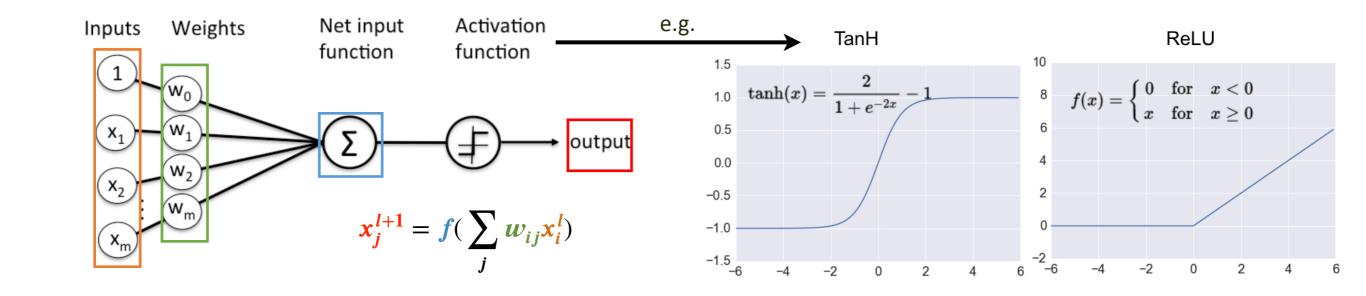
- Training: measure beam sizes while scanning DWP & various ID configurations → acquire data at 10 Hz → input for training of NN (DL)
- Result of DL is *prediction* for DWP required to keep beam size constant for arbitrary ID configurations → run as NN-based ID FF

IDs Training Requires only large amounts of **Deep Learning** NN σ_{v} data & reproducibility **Skews Output** Input NN **Application during ops Skews** IDs Set Target σ_v **Prediction** Skews

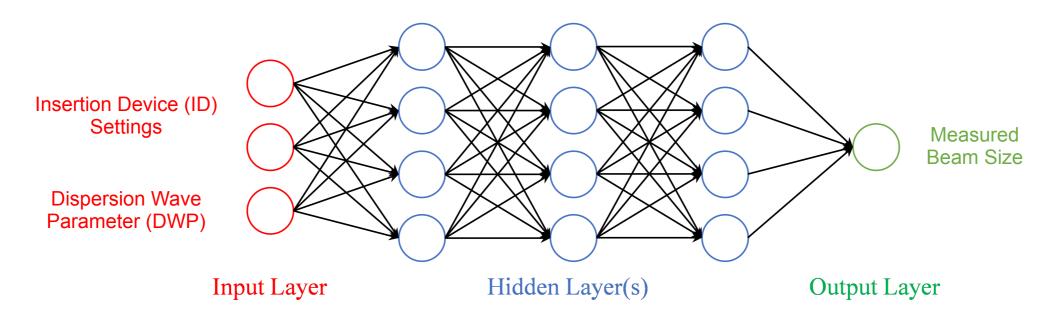
How a Neural Network (NN) Works



Courtesy: S. Liu



Deep Learning: How we Trained the NN



Input Layer: ID settings (22-35 Dimension)

and DWP (1 Dimension)

Three Hidden Fully Connected Layers:

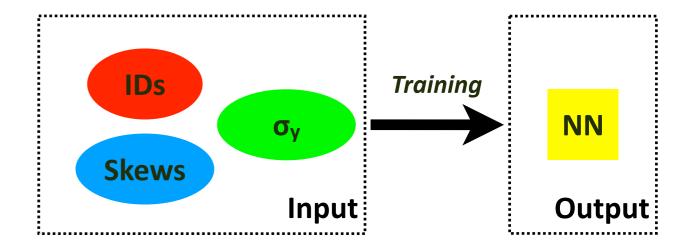
128, 64, 32 neurons in each layer Output Layer: Vertical Beam Size (1

Dimension)

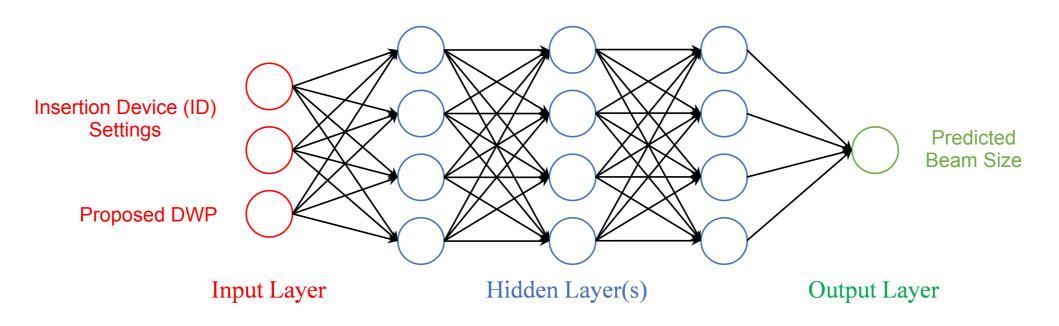
Regularization: L_2 regularizer with $\lambda = 10^{-4}$ Optimization: Adam Optimizer with learning

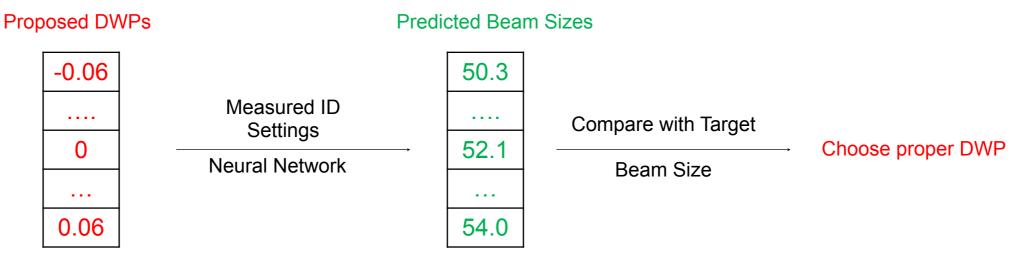
rate $\alpha = 10^{-3}$

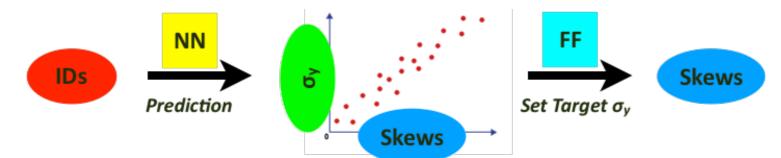
	Raw Data		With Square Features	
Architecture	Training MSE	Evaluation MSE	Training MSE	Evaluation MSE
100.01				
128-64	0.0265	0.0268	0.0257	0.0260
256-64	0.0243	0.0245	0.0259	0.0262
512-128	0.0243	0.0247	0.0243	0.0247
128-64-32	0.0238	0.0242	0.0243	0.0245
256-128-64	0.0236	0.0240	0.0240	0.0246
256-128-64-32	0.0245	0.0249	0.0245	0.0248



Resulting NN Enables ID Feed-Forward at ≈3 Hz

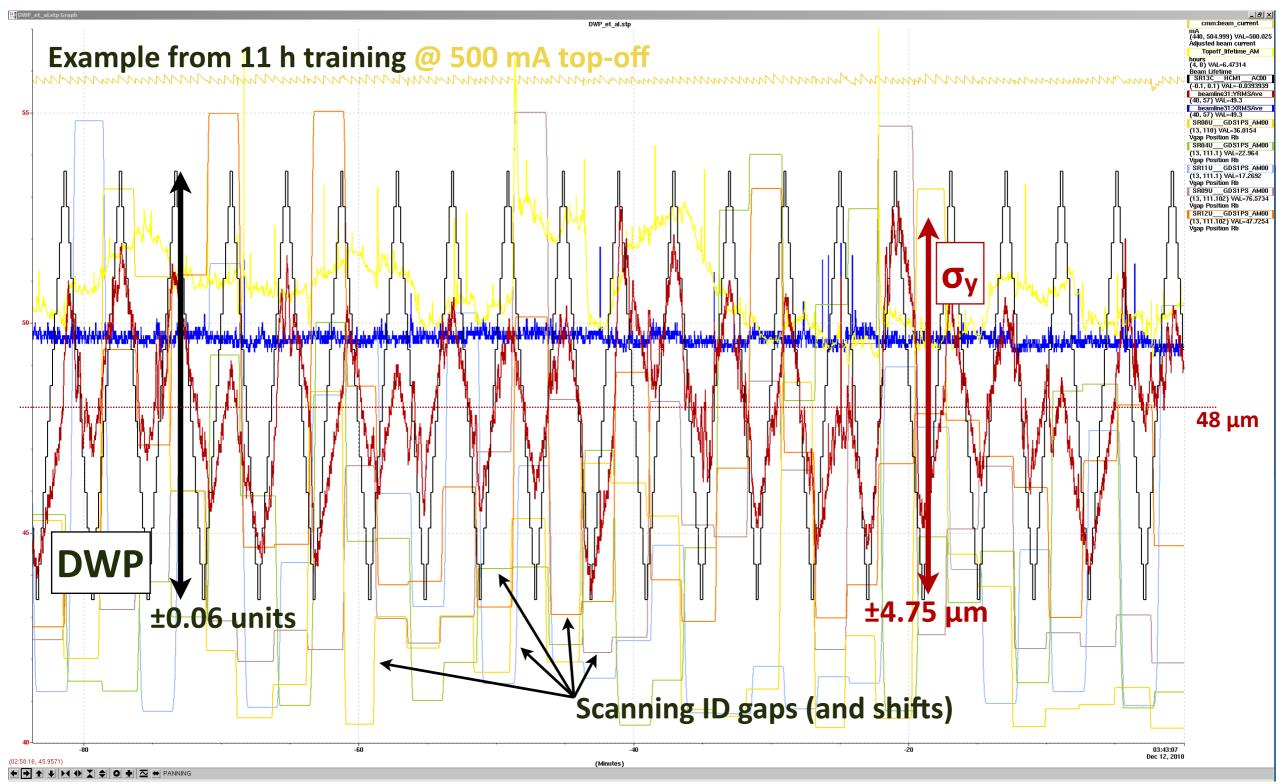




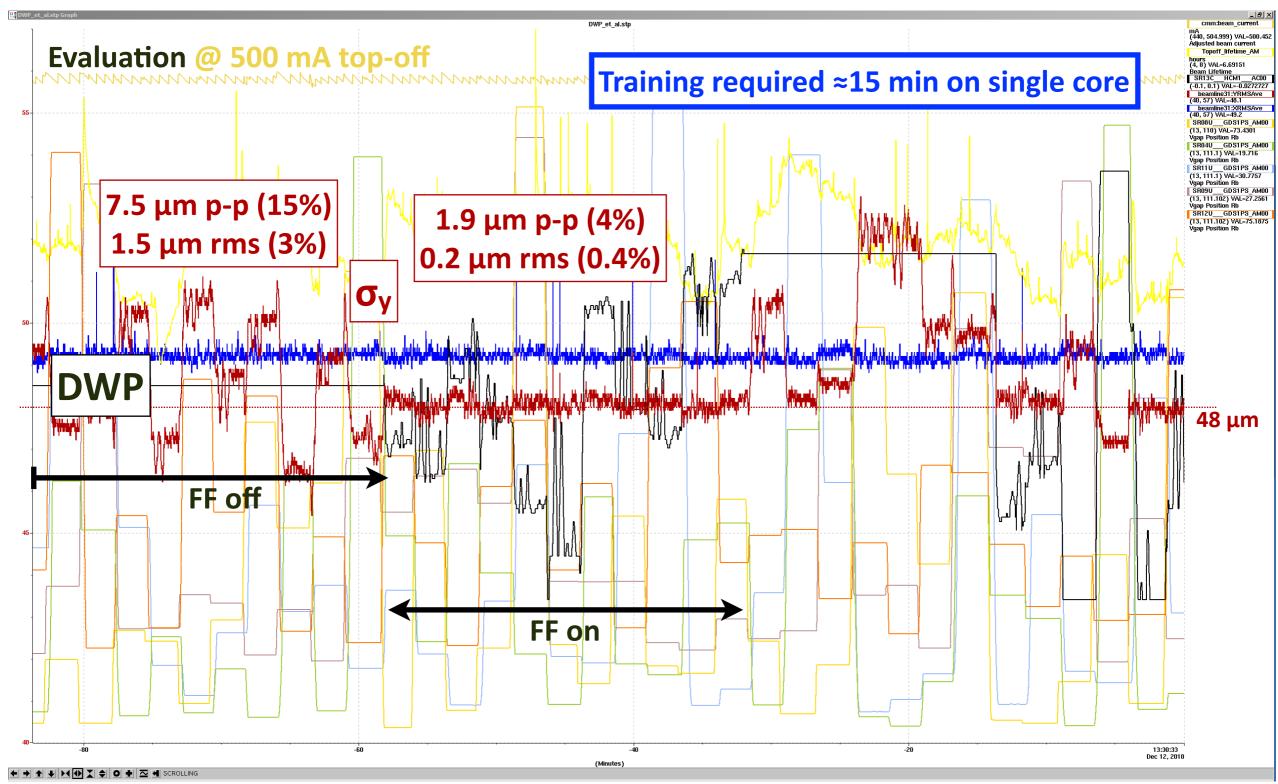


PRL **123**, 194801 (2019)

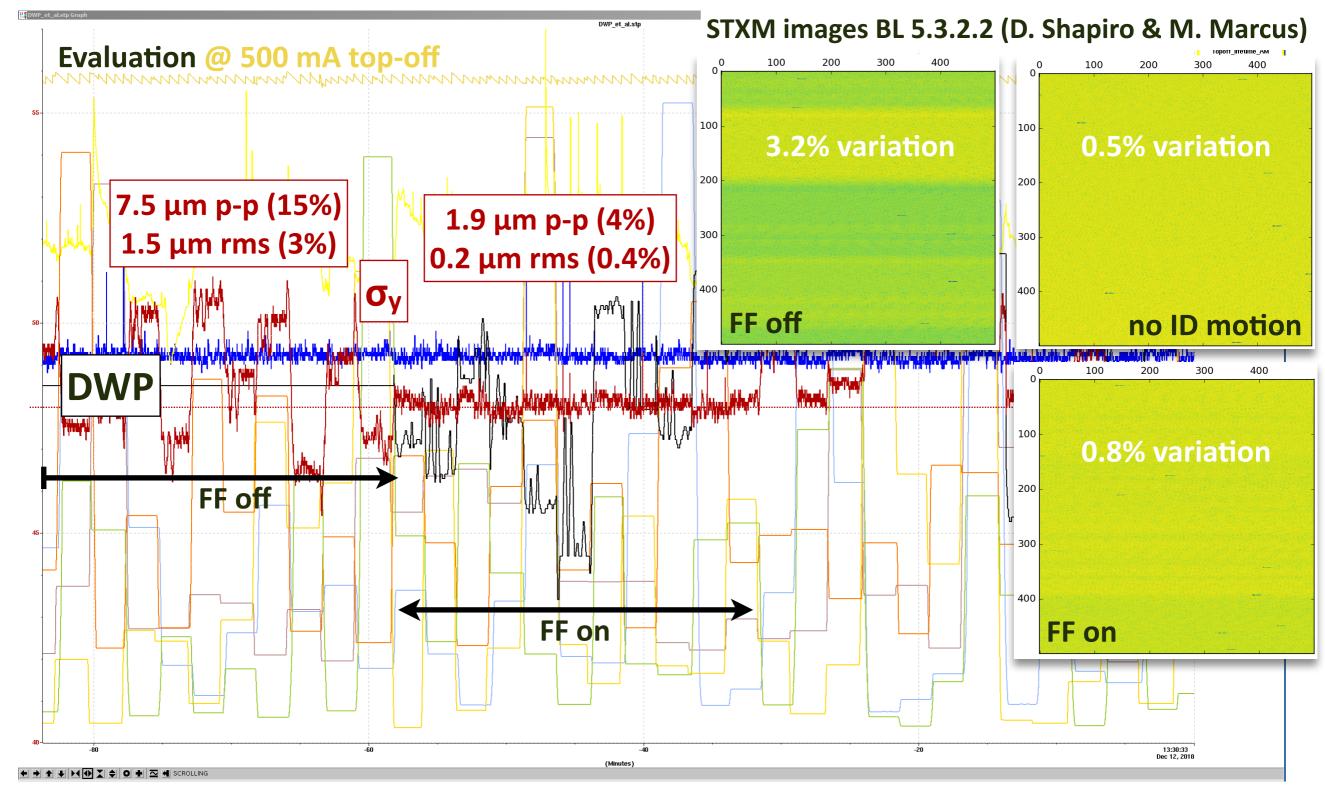
Physics Shift: Data Collection for NN Training



Physics Shift: Running NN-based ID Feed-Forward



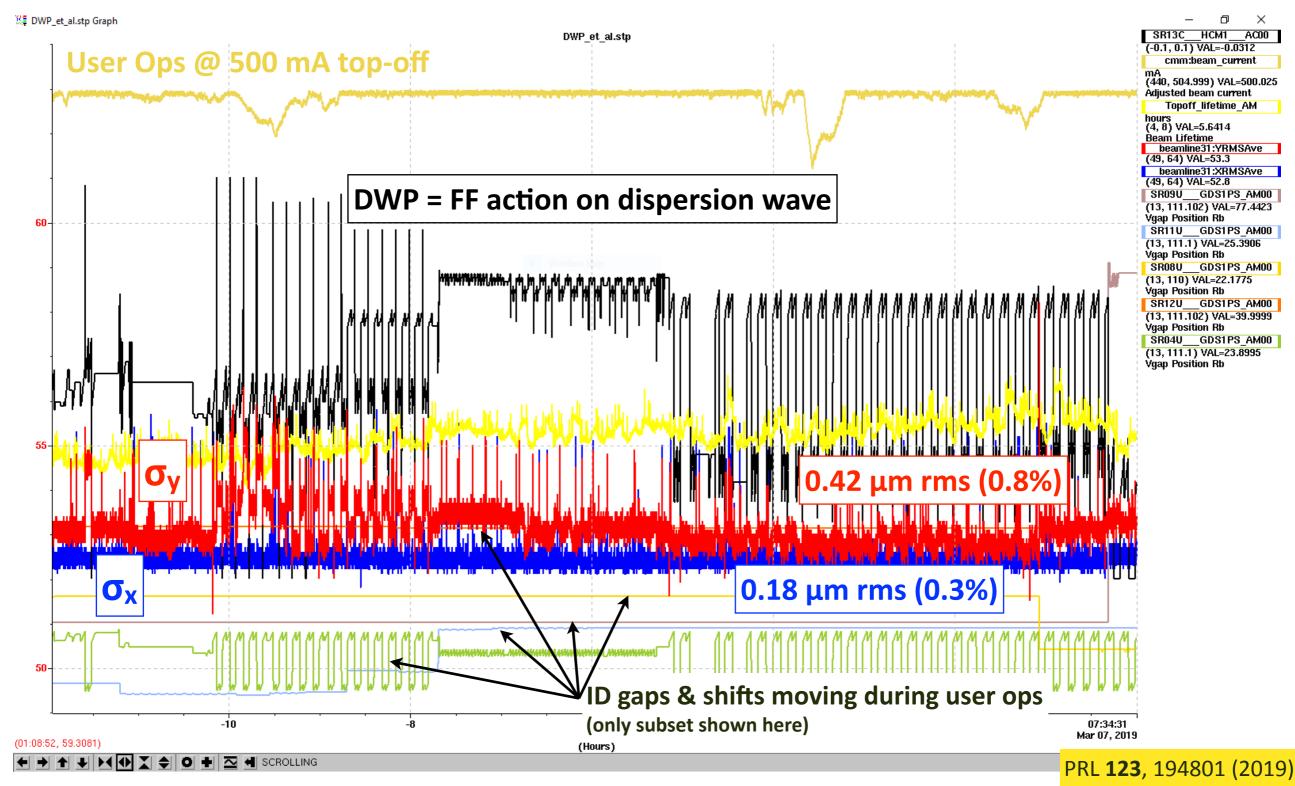
Physics Shift: Running NN-based ID Feed-Forward



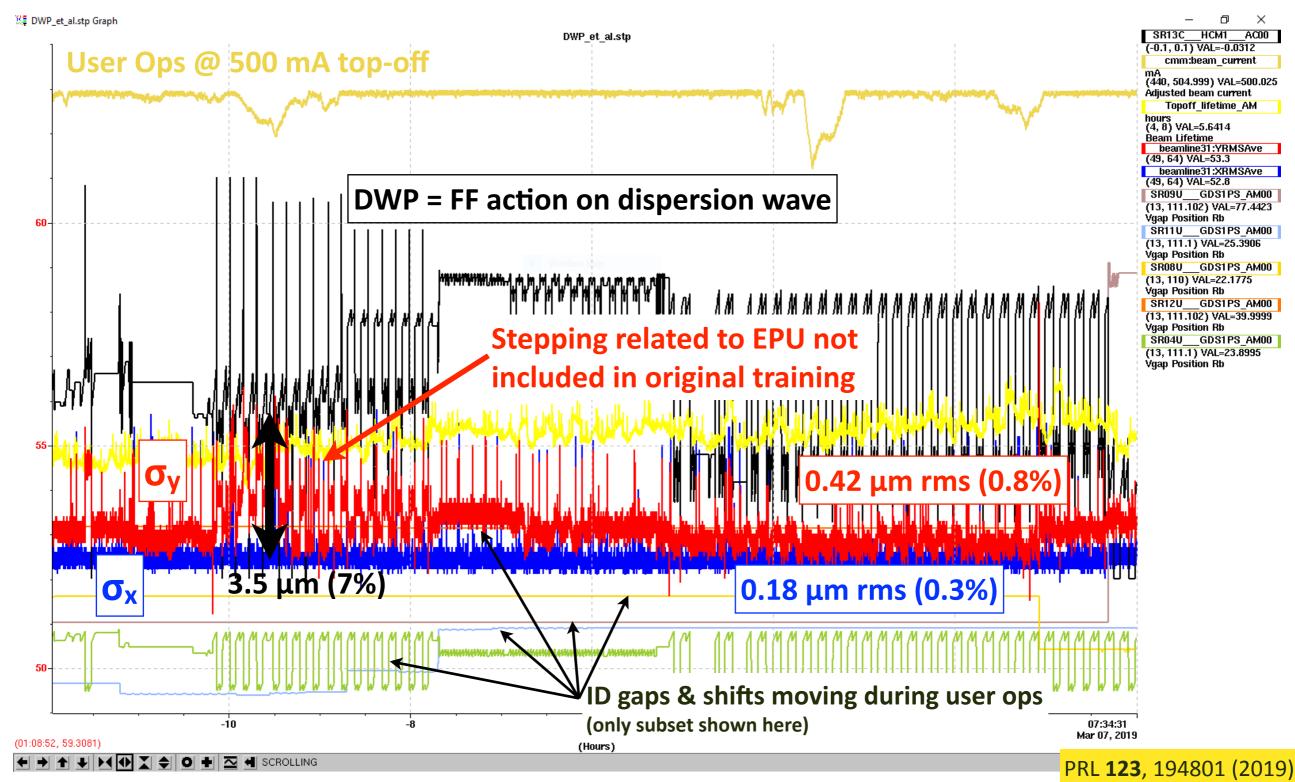
First Experiments During User Ops

- Use machine shift to acquire training data by scanning operational
 IDs in a quasi-randomized fashion (favoring operational gap range) → train NN
- Put this NN into FF operation during user ops and evaluate

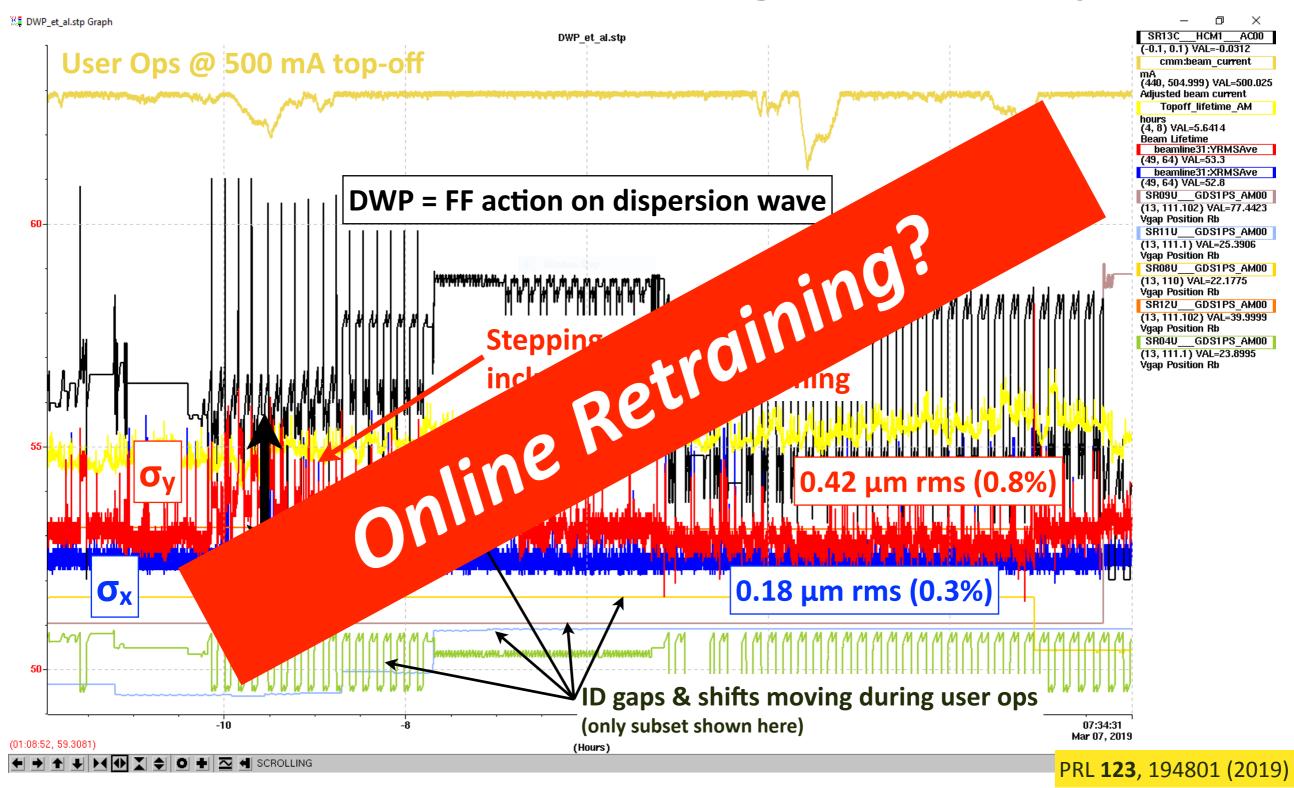
Stabilization Confirmed During First User Ops Trial



Stabilization Confirmed During First User Ops Trial

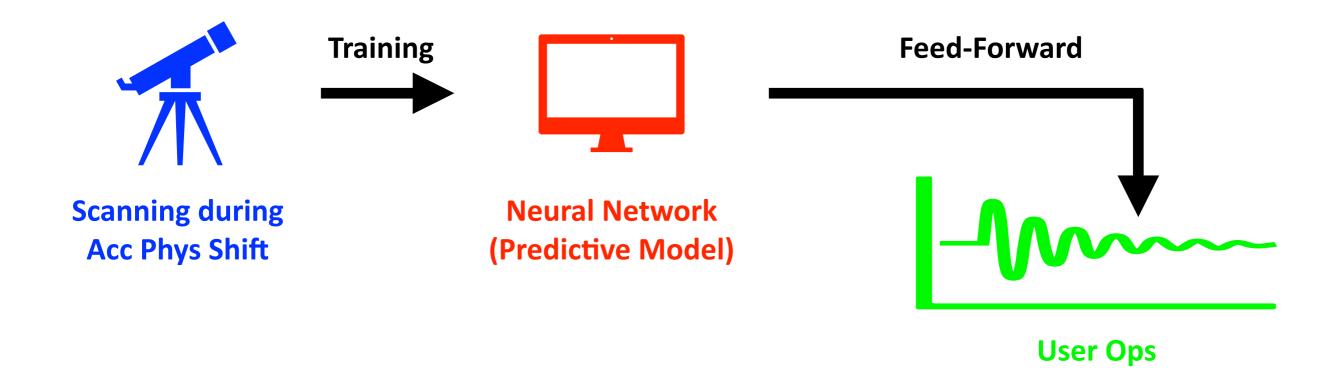


Stabilization Confirmed During First User Ops Trial



Online Retraining: Improve NN with User Ops Data

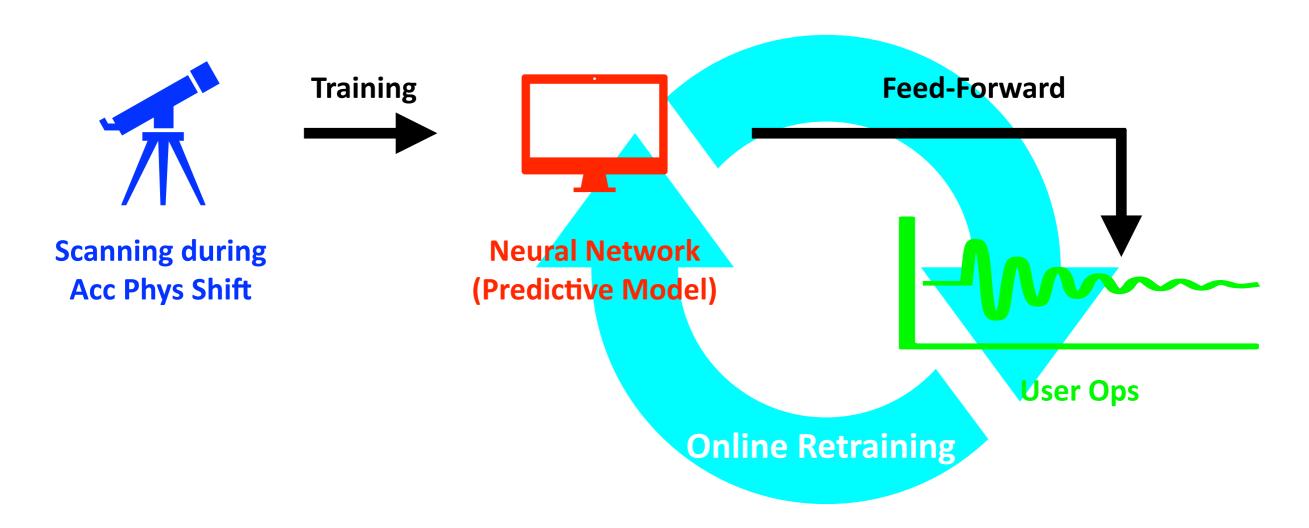
So far: "Conventional" Machine Learning



PRL **123**, 194801 (2019)

Online Retraining: Improve NN with User Ops Data

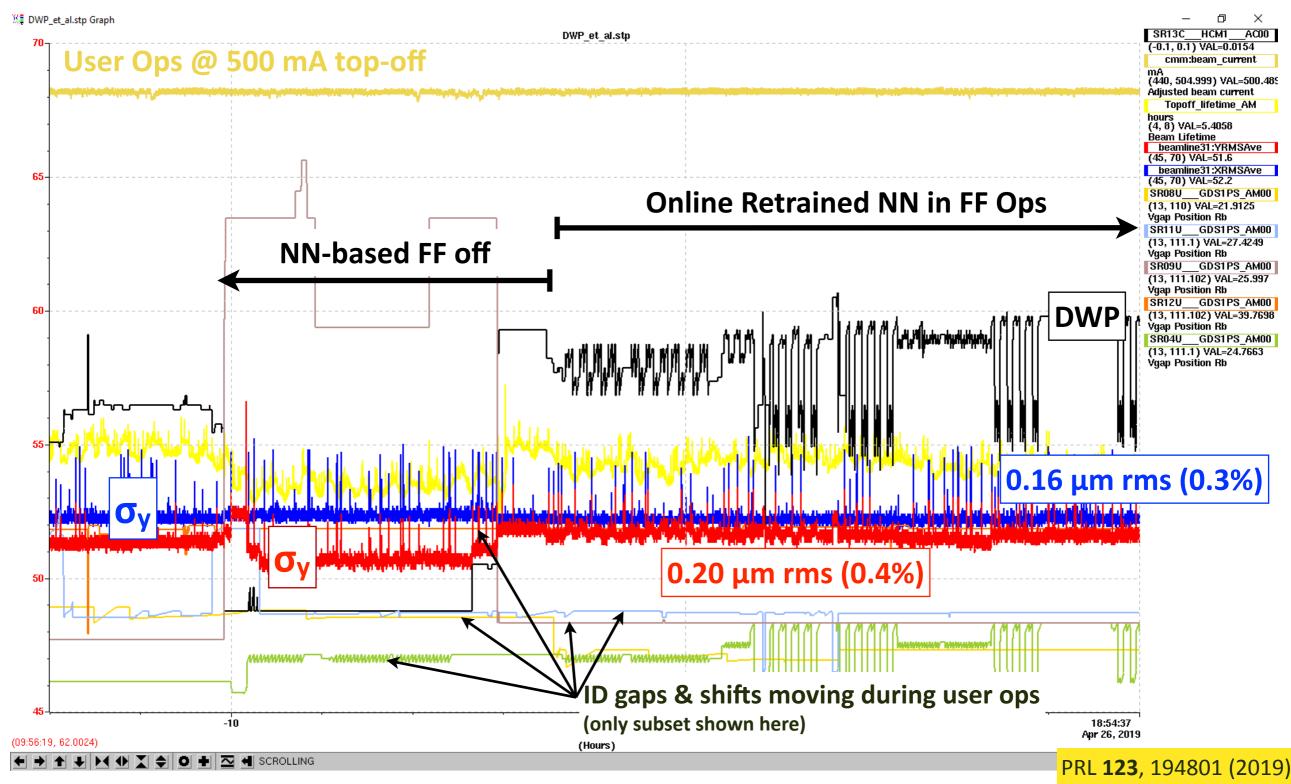
Online Retraining: apply user ops data to improve NN → swap NN used for ID FF on the fly



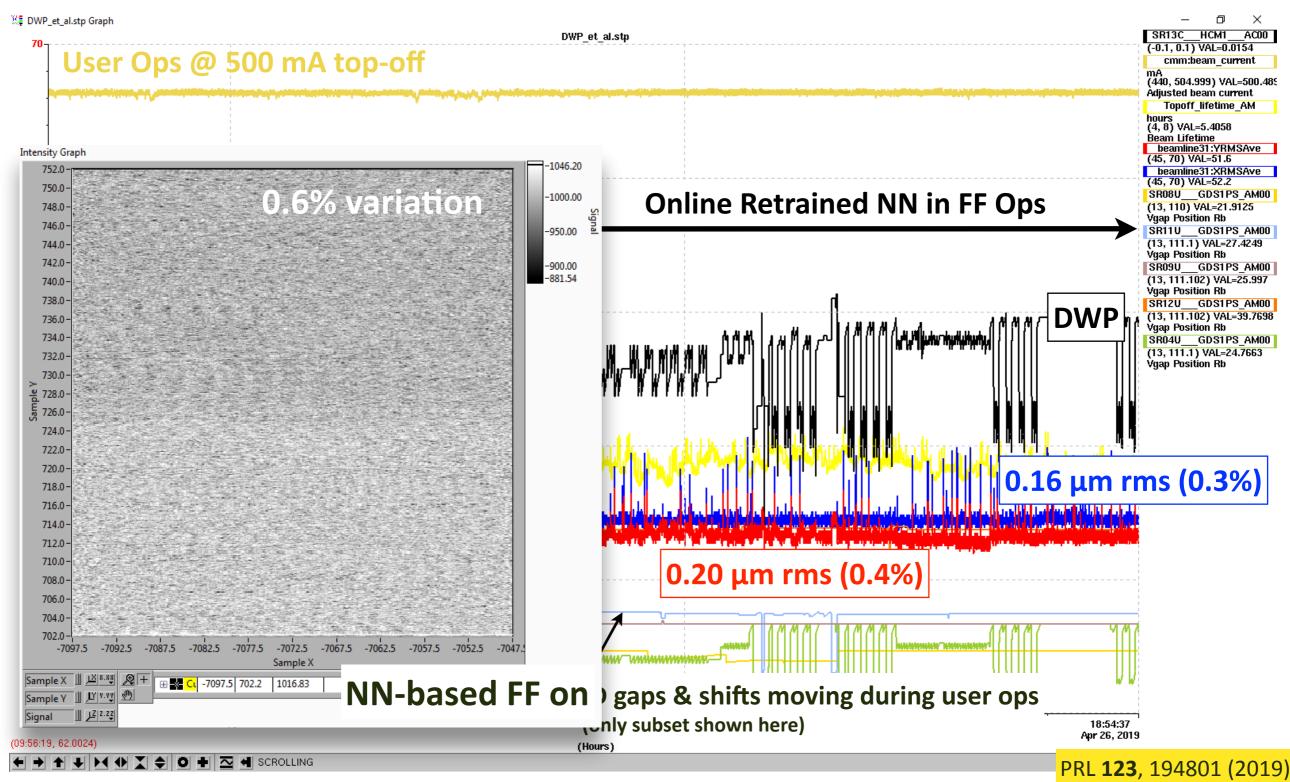
NN can be continuously online retrained during user ops to improve FF performance (exploiting huge amounts of data acquired during user ops)

PRL 123, 194801 (2019)

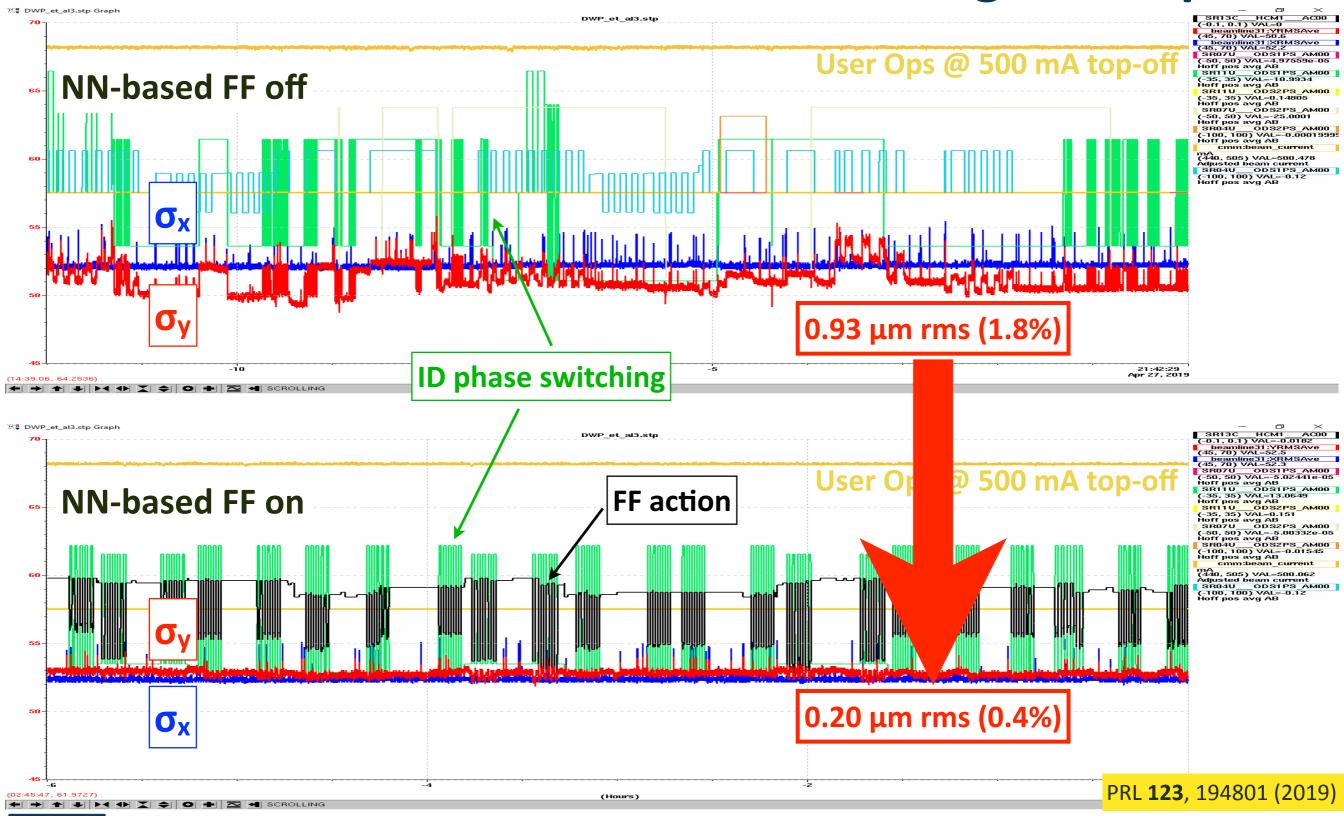
Substantial Improvement After Online Retraining



Substantial Improvement After Online Retraining



Results: NN-based FF Off vs. On During User Ops



Stabilization Confirmed at Experiment

ALS Beamline 5.3.2.2

