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* MBA lattices are very challenging: dense & exploit very strong

focusing = drives strong chromatic & higher-order corrections

e Solutions often highly nonlinear & involve many degrees of
freedom (DoF) » demanding optimization:
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- tough objectives, many of which often in direct competition

- large number of parameters, many boundary constraints
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 4th-generation storage rings (4GSRs) leverage MBA lattices to
render ultra-high brightness with large coherent fraction ~50000 0 500 ~50000 0 500
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* MBA lattices are very challenging: dense & exploit very strong
focusing = drives strong chromatic & higher-order corrections

Courtesy: Dave Robin
I

e Solutions often highly nonlinear & involve many degrees of
freedom (DoF) » demanding optimization:

- tough objectives, many of which often in direct competition 4 ; |
- large number of parameters, many boundary constraints 3.5/ ol * gen=100
. * gen=200
* Multi-objective genetic algorithms (MOGA) are highly successful 3f gen=400
at such optimization & have become tool of choice 5 * 9en=800
. .. e 5 . *+ gen=2000
« However, stochastic nature is inherent weakness » need to =, G'Obf‘c')z‘;t:nma'
evaluate vast number of lattice candidates, most ultimately
rejected 9 s
e Do not want to artificially limit DoF, search ranges, or make many 1 -
e ey . . . Courtesy: Changchun Sun
initial assumptions about attractive solutions -» so what can we do? 03 . ‘ ‘
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Emittance (m-rad) x 1071
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Introduction: Machine Learning (ML) to the Rescue

* ML can be employed to render neural networks (NNs) - surrogate
models used in lieu of computationally expensive evaluation (e.g.
many-turn nonlinear tracking)

* Lattice candidate evaluation becomes near instantaneous - ideally,
want to speed up MOGA without modifying MOGA/tracking tools
or existing workflows & without sacrificing physics fidelity

* Previous attempts [1-3] have focused on various aspects, but we
set out with a different emphasis:

- Direct optimization of relevant physics quantities (g0, DA, MA)
- Combined linear/nonlinear optimization involving all free
parameters (quadrupoles & sextupoles)

[1] M. Kranjcéevi¢, B. Riemann, A. Adelmann, A. Streun, PRAB 24 014601, 2021.
[2] Y. Li, W. Cheng, LYu, R. Rainer, PRAB 21 054601, 2018.
[3]J. Wan, P. Chu, Y. Jiao, PRAB 23 081601, 2020.
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ALS-U as a Test Case

» ALS-U storage ring (SR) calls for a challenging
9BA in order to achieve =75 pm rad (round
beam) at 2 GeV in <200 m circumference

e But retain booster (BR) & linac (LN) - build
accumulator ring (AR) to damp & top off

* 9BA SR lattice tailored for highest soft x-ray
brightness » dense, strong, very strained
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ALS-U as a Test Case

* ALS-U storage ring (SR) calls for a challenging "MA
9BA in order to achieve =75 pm rad (round . . SZZZ
beam) at 2 GeV in <200 m circumference ?' R IRAR ¢ F3 11 o0

* But retain booster (BR) & linac (LN) = build %2 E:i
accumulator ring (AR) to damp & top off &g-s» 0.016

* 9BA SR lattice tailored for highest soft x-ray §4 :Z:Z;S
brightness = dense, strong, very strained s €0 = 108 pm rad 0.022

= -5r¢ 2.5% MA U 0.024

* Highly staged MOGA approach resulted in +1 mm DA ' 0006

- +1 mm DA (on-axis swap-out injection with AR) 09 1 11 1.2
Emittance [m-rad] %1010
- =1 hr lifetime (with 3HCs) Courtesy: Changchun Sur
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A First Simple NN for Sextupole Optimization

* ALS-U 9BA has 4 sextupole families: 2 required for chromatic
corrections = leaves 2 harmonic families (SH1 & SH2) for

optimization of DA & MA

* Small & simple 3-layer NN renders accurate prediction of
DA/MA as a function of 2 SH variables [4] instead of many-

turn tracking with TRACY

[4] Y. Lu, S.C. Leemann, C. Sun, et al., IPAC2021, MOPAB106, p.387.
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A First Simple NN for Sextupole Optimization

* ALS-U 9BA has 4 sextupole families: 2 required for chromatic var2

. . epe e 0 ----- o ----- 0---» )
corrections - leaves 2 harmonic families (SH1 & SH2) for BRSNS Very Slow DA/MA Tracking

optimization of DA & MA T T O *

* Small & simple 3-layer NN renders accurate prediction of N
DA/MA as a function of 2 SH variables [4] instead of many- varl E

turn tracking with TRACY

+_ NN Lookup
- Training involves low density sampling of 2D input space %?I%‘Z 0[] Deep Learning
- 202 samples tracked for training data = predictions o

accurate to within =2% rms

var2 obj2

varl objl

[4] Y. Lu, S.C. Leemann, C. Sun, et al., IPAC2021, MOPAB106, p.387.
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A First Simple NN for Sextupole Optimization

* ALS-U 9BA has 4 sextupole families: 2 required for chromatic
corrections = leaves 2 harmonic families (SH1 & SH2) for
optimization of DA & MA

* Small & simple 3-layer NN renders accurate prediction of
DA/MA as a function of 2 SH variables [4] instead of many-
turn tracking with TRACY

- Training involves low density sampling of 2D input space

- 202 samples tracked for training data = predictions
accurate to within =2% rms

[4] Y. Lu, S.C. Leemann, C. Sun, et al., IPAC2021, MOPAB106, p.387.
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A First Simple NN for Sextupole Optimization

* ALS-U 9BA has 4 sextupole families: 2 required for chromatic
corrections = leaves 2 harmonic families (SH1 & SH2) for
optimization of DA & MA

* Small & simple 3-layer NN renders accurate prediction of
DA/MA as a function of 2 SH variables [4] instead of many-
turn tracking with TRACY

2.60 A

2.55 A1

<
- Training involves low density sampling of 2D input space =

- 202 samples tracked for training data = predictions
accurate to within =2% rms

- Overall speedup = factor 625 (vs. traditional MOGA
requiring 250,000 lattices tracked)

[4] Y. Lu, S.C. Leemann, C. Sun, et al., IPAC2021, MOPAB106, p.387.
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A First Simple NN for Sextupole Optimization

* ALS-U 9BA has 4 sextupole families: 2 required for chromatic
corrections = leaves 2 harmonic families (SH1 & SH2) for
optimization of DA & MA

* Small & simple 3-layer NN renders accurate prediction of
DA/MA as a function of 2 SH variables [4] instead of many-
turn tracking with TRACY

- Training involves low density sampling of 2D input space

SH2 b, [1/m3]

- 202 samples tracked for training data = predictions
accurate to within =2% rms

- Overall speedup = factor 625 (vs. traditional MOGA
requiring 250,000 lattices tracked)

- NN design & training can be automated, 2 lines of code
modified in MOGA optimization code

[4] Y. Lu, S.C. Leemann, C. Sun, et al., IPAC2021, MOPAB106, p.387.
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ML for Full Linear & Nonlinear ALS-U Optimization

Courtesy: Changchun Sun
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ML for Full Linear & Nonlinear ALS-U Optimization
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ML for Full Linear & Nonlinear ALS-U Optimization

Courtesy: Changchun Sun
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ML for Full Linear & Nonlinear ALS-U Optimization (cont.)

* Instead: use first generations of MOGA data as
training data for deep neural networks (DNNs)
° Use tWO 8_|ayer DN NS |n ||eu Of MOGA Ca”S to Fully-connected (FC) NN, using ReLU as activation function, # = node depth
TRACY for DA and MA (via many-turn tracking) Lo
2.00
e Traditional MOGA requires about 640 gen L7s N2k T
(5000 children/gen) = =8 days on 1000-core 150/ -
cluster 17
* Training 2 DNNs to get DA/MA predictions =1% iéu”""
rms requires about 10 gen (of which only =5 used ]
due to rejection of candidates with violated constraints) 0501 Loss = Mean Abs Error
0.25-
0.0075 100 200 emochs 300 400 500
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ML for Full Linear & Nonlinear ALS-U Optimization (cont.)

* Instead: use first generations of MOGA data as
training data for deep neural networks (DNNs) e —
° Use tWO 8_|ayer DN NS in ||eu Of MOGA Ca”S to Fully-connected (FC) NN, using ReLU as activation function, # = node depth

TRACY for DA and MA (via many-turn tracking)

. . — 0 1000 \
* Traditional MOGA requires about 640 gen s 1% rms prediction error
. ..G_;J ésoo
(5000 children/gen) = =8 days on 1000-core S _5000] «
C|USter § R—re .—205 0 200 400 )‘
' . . . E _10000- Total Diffusion Rate Prediction Error [a.u] ] ‘.’?:. .
* Training 2 DNNs to get DA/MA predictions =1% 2 a
. B . .‘ol
rms requires about 10 gen (of which only =5 used 2 —15000- ¥
due to rejection of candidates with violated constraints) E -
: . S _20000{ " Evaluation Data
e But once DNNs trained = quasi-instantaneous £ - . N=4,874
' —20000 —15000 —10000 —5000 0
lookup (16 ms) vs. DA/MA tracking (88 sec) el Ditfusion Rote (2]
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ML for Full Linear & Nonlinear ALS-U Optimization (cont.)

Input FC + RelLU, 32 FC + RelU, 64

* Instead: use first generations of MOGA data as
training data for deep neural networks (DNNs) . Er—

e Use two 8-layer DNNs in lieu of MOGA calls to
TRACY for DA and MA (via many-turn tracking)

Fully-connected (FC) NN, using ReLU as activation function, # = node depth

* Traditional MOGA requires about 640 gen _0'005-;: 1% rms prediction error "
(5000 children/gen) = =8 days on 1000-core H_O_omé;‘: '
cluster g 0

* Training 2 DNNs to get DA/MA predictions 1% 5o
rms requires about 10 gen (of which only =5 used E 0.020.
due to rejection of candidates with violated constraints) B

e But once DNNs trained = quasi-instantaneous 0025 7 s
lookup (16 ms) vs. DA/MA tracking (88 sec) —0.025  ~0.020 &2?}5 —0.010  —0.005
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But of course it’s a bit more complicated...

le—-10 le-10
. e -0.01001 OQriginal MOGA (converged) ¢ -0.0100{ ML-MOGA (converged)
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. . —_ # E  ~ S
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-0.0225 AR A i 110 £ —0.0225 110 €
-0.0250 RN =, T 1.05 ~-0.0250 1.05
)*2;1,11'1. - .G-!""!‘ sm )
-0.0275 N o -0.0275
—-50000 -40000 -30000 -20000 -—10000 -50000 -40000 -30000 -20000 -—10000
Total Diffusion Rate [a.u.] Total Diffusion Rate [a.u.]
-0.0100 Training Data
_0.0125! (First 10 Gen MOGA)
—0.0150
:—0.0175
<
= _0.0200
—0.0225
—-0.0250
1.05
—-0.0275

-50000 -40000 -30000 -20000 -10000
Total Diffusion Rate [a.u.]

' ”a Simon C. Leemann e Machine Learning-Enhanced MOGA for Ultrahigh-Brightness Lattices
s)' ADVANCED LIGHT SOURCE LEL2022, ALBA, Barcelona, Spain, June 26-29, 2022

i BERKELEY LAB



But of course it’s a bit more complicated...

* ML predictions are not 100% accurate o
(training data based on initial optimization  _.s
data = potentially far from Pareto-optimal =-covs
areas in input space) % -oome

* ML-MOGA solutions show disagreement to oo

tracking validation -» converged solution
front is not entirely non-dominated

~0.0100
~0.0125
-0.0150
. —0.0175
= _0.0200
-0.0225
-0.0250

—0.0275
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But of course it’s a bit more complicated...

* ML predictions are not 100% accurate o
(training data based on initial optimization  _.s
data = potentially far from Pareto-optimal = =-oous
areas in input space) % -om00

* ML-MOGA solutions show disagreement to oo
tracking validation - converged solution ~00275
front is not entirely non-dominated

* Want to retrain DNNs with an improved o100
resampling of input space » more samples  -oous
closer to optimal solutions as in [5], ... _oowe

e ...but here for a many-dimensional input = 00200
space without making any assumptions on -0
smoothness of distributions :°'°25°

[5] A. Edelen, N. Neveu, M. Frey, et al., PRAB 23 044601, 2020.
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Repeated Retraining Improves ML-MOGA

» Retraining DNNs with tracking validation data is
computationally inexpensive & makes no
assumptions on distributions

e Retrained DNN is used for next run starting with
inputs from final gen of last run

* Iterate this ML—validation—retraining process until
ML-MOGA results reach the true Pareto-optimal front

- But when is that? How do we know our
predictions have become accurate enough and
our ML-MOGA derived Pareto front is the actual
Pareto front?

- Also, traditional MOGA requires =640 gen, ML-
MOGA trained on 10 gen » minimizing no. of
additional required iterations is crucial to
maintaining large overall speedup

g:‘\ ADVANCED LIGHT SOURCE

i BERKELEY LAB

Evaluation Data
N=5,873

S
o
o

w
o
o

1% rms
prediction error

Frequency

N
o
o

~0.005]{ 10 A
0 —0.0004 -0.0002 0.0000 I.O‘E)(‘)JOZM -0.J0ub04 ©
MA Prediction Error [ ]
— —0.0101
<
=
- —0.015-
Q
S
D
£ -0.020; :
Added data from
—0.025] 1st validation step

~0.025 -0.020 -0.015 -0.010 -—0.005
-MA [ ]

Simon C. Leemann e Machine Learning-Enhanced MOGA for Ultrahigh-Brightness Lattices
LEL2022, ALBA, Barcelona, Spain, June 26-29, 2022



Distance Metrics & Convergence

Dimensions of

Genm / input space N
* Introduce two distance metrics for input/objective space |nput / 1 n n N a}(';n) B al(gb—l) 2
 Euclidean norms normalized in each variable - single unit- Space 0;(m) = n(n——l) Z 4 Z # - )
free relative measure for movement of distribution in input/ /‘ J=lh=1 Yy i=1
objective space Pop size n Input / of child j at gen m Par?é‘:?m range
* Metrics can inform us when
- MOGA can be considered truly converged (required for
full automation) Objective Space
- there is no more added benefit from an additional €0 of child j at gen m DA of child j at gen m MA of child j at gen m

iteration of retraining—ML—validation

- \ ] v
 For objective space, choice of “golden target” leaves some 5, ) — 1 Z (€mj — 80)2 n (ij — Do)2 n (Mmj — Mo)2
freedom to lattice designer (not sensitive as long as chosen aggressively) ¢ i1 €0 Dy My
* MOGA considered converged when for large m Reference Values {9, Do, Mo)
A(Si,o(m) — 0
* Consider retraining—ML—validation process converged once A Ap =0d5(myg) —do(my)

no longer reduces with additional iterations
Tracking Validated 6, Final gen my
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Distance Metrics & Convergence (cont.)
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Results

e Retraining shows very quick convergence

(6-8 iterations)
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Results
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Results

e Retraining shows very quick convergence
(6-8 iterations)

* Once fully converged, ML-MOGA inputs &
objectives match those of traditional MOGA
to within “noise floor”

 Stochastic noise in MOGA process accounts

for bulk of discrepancy in objective space
(input space shows excellent agreement)
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Results

e Retraining shows very quick convergence
(6-8 iterations)

* Once fully converged, ML-MOGA inputs &
objectives match those of traditional MOGA
to within “noise floor”

 Stochastic noise in MOGA process accounts

for bulk of discrepancy in objective space
(input space shows excellent agreement)

e ML-MOGA results remain true to underlying
phySiCS Changes (changes in error distribution, random error seed)
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Conclusions

* ML-MOGA requires =16 gen tracked vs. =640 for traditional MOGA - overall speedup =40
(depending on exact choice of cutoff 4y)

* Only very minor modifications required to existing MOGA workflow/tools

e Convergence defined in model-independent way = process can be automated & adapted to other
optimization problems (eg. other lattices, or adding additional DoF such as reverse bending or superbends)

* Only requirement: DNN prediction errors need to remain small (2% rms)

* Note, hyperparameter tuning & DNN architecture modifications can also be automated by a
non-ML expert (eg. AutoML) = focus remains on lattice design and beam dynamics

* Vast speedup allows for optimization of multiple error lattices in parallel » resulting lattice
candidate consists of inputs that are common to all error seeds - likeliest to produce Pareto-
optimal solutions for as-built machine’s error distribution

 Potential to fully automate entire workflow is highly attractive
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Thank You!

Questions?
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