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Demonstration of machine learning-enhanced multi-objective optimization
of ultrahigh-brightness lattices for 4th-generation synchrotron light sources
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ARTICLE INFO ABSTRACT

Keywords: Fourth-generation storage rings enabled by multi-bend achromat lattices are being inaugurated worldwide and
‘Symehrotron light source: ‘many more are planned for the next decade. These sources deliver stable ultra-high brightness radiation with
Storage ring unmatched levels of transverse coherence by virtue of their highly advanced magnetic lattices. Optimization

limitation of their stochastic nature: an exceedingly vast number of candidate lattices, most of which eventually
are rejected, has to be fully evaluated. This comes at immense computational cost and thus drives excessive
to employ deep learning techniques
and iterative retraining of neural networks to massively accelerate such lattice evaluation, thereby allowing
lattice optimization to rely on far fewer a priori assumptions, open up to larger search ranges, and include right
from the start and in parallel multiple error distributions to find truly global optima, all while completing a
full optimization campaign in weeks rather than months. In this paper we present the neural network designs,
the deep leaming approach, Iteraiv retaining procedures, and demonstrate how these machin learing

sy minimal changes
applied to the optimization pipeline itself and none at all to the employed tracking codes.

[} ®
Beam dynanics of these challenging and strongly nonlinear lattices with many degrees of freedom bounded by extensive sets
e e — of constaints and muliple often confcting optimization goals s highly demanding and requires application
o of the most advanced numerica (ool availabl t0 the community. While mult-objective gencic algorithms
have been very successul in supporting these opimization cfforts,the algorithms sufe from 3 fndamental

1. Introduction ‘number of magnets that need to be tuned in a multi-variate and multi-
objective optimization process. Apart from lattice design expertise, this

[

Storage-ring based synchrotron light sources around the world are  usually calls for the most advanced numerical and analytical resources
presently undergoing a massive transformation. Pioncered in MAX  available to the community.
IV [1], the multi-bend achromat (MBA) [2] lattice has ushered in the Multi-objective genetic algorithms (MOGA) [3] have proven to be [ ]
era of dth-generation storage rings (4GSRs): a class of ring-based light  gne of the most successful and commonly used tools for the optimiza-
sources capale of deliveing stble - igh Brightncss FACION i of e lght souee s 14-51. Maltple variats of MOGA
limited synchrotron radiation with a high degree of transverse co- 2 aiable. among which the Pareto-based algorithm NSGA-IL s the
herence simulancously 10 dosens of beamlines. The MBA. latice— Trost popules [7,81, Optimization of an MBA latice with MOGA s o A q
presently foreseen by almost every new source and upgrade project—is o N " o
Composed of many small apertace magnets with high field goadients  Dighly non-tivial since ultra-high brightness, ifetime, and injection ) )

efficiency are usually in direct competition and a suitable trade-off

needs to be careflly establishe, taking nto account an exceedingly

capable of providing the strong focusing necessary to achieve ultra-
low emittance. This strong focusing reduces the dispersion and drives
the natural chromaticity in the lattice, Combined, this calls for very  large number of constraints. While MOGA is extremely well equipped to
strong sextupoles leading to highly nonlinear I hibiting limited timization, it suffers from the fundamental limitation
dynamic aperture (DA) and momentum aperture (MA) compared to  that—as a stochastic process—it requires a vast number of candidate
those of 3rd-generation light sources. Apart from the many engineering lattices to be evaluated. Nonlinear lattice evaluation based on many-
difficulties in the design of a 4GSR, the beam physics and lattice  turn particle tracking is very CPU-expensive and nevertheless, almost
optimization itself present a significant challenge due to the large  all evaluated lattices are eventually rejected by MOGA. This weakness,
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Introduction: The Problem

 4th-generation storage rings (4GSRs) leverage MBA lattices to
render ultra-high brightness with large coherent fraction

* MBA lattices are very challenging: dense & exploit very strong
focusing = drives strong chromatic & higher-order corrections

e Solutions often highly nonlinear & involve many degrees of
freedom (DoF) » demanding optimization:

- tough objectives, many of which often in direct competition

- large number of parameters, many boundary constraints
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Introduction: The Problem
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MBA

 4th-generation storage rings (4GSRs) leverage MBA lattices to

render ultra-high brightness with large coherent fraction ~50000 0 500 ~50000 0 500

X [um] x [um]

« MBA lattices are very challenging: dense & exploit very strong Courtesy: Dave Robin

focusing = drives strong chromatic & higher-order corrections e 7] Fd __

e Solutions often highly nonlinear & involve many degrees of
freedom (DoF) » demanding optimization:

- tough objectives, many of which often in direct competition 4 ; ﬂ |
- large number of parameters, many boundary constraints 3.5/ * gen=100
. * gen=200
* Multi-objective genetic algorithms (MOGA) are highly successful 3f gen=400
at such optimization & have become tool of choice 5 * 9en=800
. .. e 5 . *+ gen=2000
« However, stochastic nature is inherent weakness » need to =, G'Obf‘;g%t:nma'
evaluate vast number of lattice candidates, most ultimately
rejected 9 s
e Do not want to artificially limit DoF, search ranges, or make many 1 -
e ey . . . Courtesy: Changchun Sun
initial assumptions about attractive solutions -» so what can we do? 03 . ‘ ;
0.5 1 g 2
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Introduction: Machine Learning (ML) to the Rescue

* ML can be employed to render neural networks (NNs) - surrogate
models used in lieu of computationally expensive evaluation (e.g.
many-turn nonlinear tracking)

* Lattice candidate evaluation becomes near instantaneous - ideally,
want to speed up MOGA without modifying MOGA/tracking tools
or existing workflows & without sacrificing physics fidelity

* Previous attempts [1-4] have focused on various aspects, but we
set out with a different emphasis:

- Direct optimization of relevant physics quantities (g0, DA, MA)

- Combined linear/nonlinear optimization involving all free
parameters (quadrupoles & sextupoles)

[1] M. Kranjéevié, B. Riemann, A. Adelmann, A. Streun, PRAB 24 014601, 2021.
[2] M. Song, X. Huang, L. Spentzouris, Z. Zhang, NIM-A 976 164273, 2020.
[3]Y. Li, W. Cheng, LYu, R. Rainer, PRAB 21 054601, 2018.

[4] J. Wan, P. Chu, Y. Jiao, PRAB 23 081601, 2020.
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ALS-U as a Test Case

» ALS-U storage ring (SR) calls for a challenging
9BA in order to achieve =75 pm rad (round
beam) at 2 GeV in <200 m circumference

e But retain booster (BR) & linac (LN) - build
accumulator ring (AR) to damp & top off

* 9BA SR lattice tailored for highest soft x-ray
brightness » dense, strong, very strained

Position (m)
Courtesy: Changchun Sun
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ALS-U as a Test Case

» ALS-U storage ring (SR) calls for a challenging
9BA in order to achieve =75 pm rad (round
beam) at 2 GeV in <200 m circumference

e But retain booster (BR) & linac (LN) - build
accumulator ring (AR) to damp & top off

* 9BA SR lattice tailored for highest soft x-ray
brightness » dense, strong, very strained

* Highly staged MOGA approach resulted in
- 1 mm DA (on-axis swap-out injection with AR)

- =1 hr lifetime (with 3HCs)

[2 )
iﬁ ADVANCED LIGHT SOURCE pANy iy =2,
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A First Simple NN for Sextupole Optimization

* ALS-U 9BA has 4 sextupole families: 2 required for chromatic
corrections = leaves 2 harmonic families (SH1 & SH2) for

optimization of DA & MA

* Small & simple 3-layer NN renders accurate prediction of
DA/MA as a function of 2 SH variables [5] instead of many-

turn tracking with TRACY

[5]Y. Lu, S.C. Leemann, C. Sun, et al., IPAC2021, MOPAB106, p.387.
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A First Simple NN for Sextupole Optimization

* ALS-U 9BA has 4 sextupole families: 2 required for chromatic vz
corrections = leaves 2 harmonic families (SH1 & SH2) for BEEEs Very Slow DA/MA Tracking

optimization of DA & MA ...... . ..... . ..... . *

* Small & simple 3-layer NN renders accurate prediction of Pk
DA/MA as a function of 2 SH variables [5] instead of many- varl

turn tracking with TRACY £ NN Lookup

- Training involves low density sampling of 2D input space | »%»é) 20— Deep Learning
k;/\r//

- 202 samples tracked for training data = predictions
accurate to within =2% rms

var2 obj2

varl objl

[5]Y. Lu, S.C. Leemann, C. Sun, et al., IPAC2021, MOPAB106, p.387.
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A First Simple NN for Sextupole Optimization

* ALS-U 9BA has 4 sextupole families: 2 required for chromatic
corrections = leaves 2 harmonic families (SH1 & SH2) for

optimization of DA & MA

* Small & simple 3-layer NN renders accurate prediction of
DA/MA as a function of 2 SH variables [5] instead of many-

turn tracking with TRACY

- Training involves low density sampling of 2D input space

- 202 samples tracked for training data = predictions

accurate to within =2% rms

[5]Y. Lu, S.C. Leemann, C. Sun, et al., IPAC2021, MOPAB106, p.387.
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A First Simple NN for Sextupole Optimization

* ALS-U 9BA has 4 sextupole families: 2 required for chromatic
corrections = leaves 2 harmonic families (SH1 & SH2) for
optimization of DA & MA

* Small & simple 3-layer NN renders accurate prediction of
DA/MA as a function of 2 SH variables [5] instead of many-
turn tracking with TRACY

- Training involves low density sampling of 2D input space

- 202 samples tracked for training data = predictions
accurate to within =2% rms

- Overall speedup = factor 625 (vs. traditional MOGA
requiring 250,000 lattices tracked)

[5]Y. Lu, S.C. Leemann, C. Sun, et al., IPAC2021, MOPAB106, p.387.
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A First Simple NN for Sextupole Optimization

* ALS-U 9BA has 4 sextupole families: 2 required for chromatic
corrections = leaves 2 harmonic families (SH1 & SH2) for
optimization of DA & MA

* Small & simple 3-layer NN renders accurate prediction of
DA/MA as a function of 2 SH variables [5] instead of many-
turn tracking with TRACY

- Training involves low density sampling of 2D input space

- 202 samples tracked for training data = predictions
accurate to within =2% rms

- Overall speedup = factor 625 (vs. traditional MOGA
requiring 250,000 lattices tracked)

- NN design & training can be automated, 2 lines of code
modified in MOGA optimization code

[5]Y. Lu, S.C. Leemann, C. Sun, et al., IPAC2021, MOPAB106, p.387.
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ML for Full Linear & Nonlinear ALS-U Optimization

Courtesy: Changchun Sun
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ML for Full Linear & Nonlinear ALS-U Optimization

: : i i Introduce 3.2T
: : : Linear & nonlinear Opt. Linear & nonlinear Opt. .
Linear Opt. Linear & nonlinear opt with reverse bend using alternative objectives HBend by matching
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ML for Full Linear & Nonlinear ALS-U Optimization

Courtesy: Changchun Sun
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ML for Full Linear & Nonlinear ALS-U Optimization (cont.)

* Instead: use first generations of MOGA data as
training data for deep neural networks (DNNs)
° Use tWO 8_|ayer DN NS |n ||eu Of MOGA Ca”S to Fully-connected (FC) NN, using ReLU as activation function, # = node depth
TRACY for DA and MA (via many-turn tracking) Lo
2.00
e Traditional MOGA requires about 640 gen L7s N2k T
(5000 children/gen) = =8 days on 1000-core 150/ -
cluster 17
* Training 2 DNNs to get DA/MA predictions =1% iéu”""
rms requires about 10 gen (of which only =5 used ]
due to rejection of candidates with violated constraints) 0501 Loss = Mean Abs Error
0.25-
0.0075 100 200 emochs 300 400 500
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ML for Full Linear & Nonlinear ALS-U Optimization (cont.)

* Instead: use first generations of MOGA data as
training data for deep neural networks (DNNs)

e Use two 8-layer DNNs in lieu of MOGA calls to
TRACY for DA and MA (via many-turn tracking)

 Traditional MOGA requires about 640 gen
(5000 children/gen) = =8 days on 1000-core
cluster

* Training 2 DNNs to get DA/MA predictions =1%

rms requires about 10 gen (of which only =5 used
due to rejection of candidates with violated constraints)

e But once DNNs trained = quasi-instantaneous
lookup (16 ms) vs. DA/MA tracking (88 sec)

[2 )
iﬁ ADVANCED LIGHT SOURCE pANy iy =2,

H BERKELEY LAB
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ML for Full Linear & Nonlinear ALS-U Optimization (cont.)

* Instead: use first generations of MOGA data as
training data for deep neural networks (DNNs)

e Use two 8-layer DNNs in lieu of MOGA calls to
TRACY for DA and MA (via many-turn tracking)

 Traditional MOGA requires about 640 gen
(5000 children/gen) = =8 days on 1000-core
cluster

* Training 2 DNNs to get DA/MA predictions =1%

rms requires about 10 gen (of which only =5 used
due to rejection of candidates with violated constraints)

e But once DNNs trained = quasi-instantaneous
lookup (16 ms) vs. DA/MA tracking (88 sec)

Simon C.

[2 )
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But of course it’s a bit more complicated...
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But of course it’s a bit more complicated...

—0.0100

* ML predictions are not 100% accurate
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But of course it’s a bit more complicated...
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Repeated Retraining Improves ML-MOGA

» Retraining DNNs with tracking validation data is
computationally inexpensive & makes no
assumptions on distributions

e Retrained DNN is used for next run starting with
inputs from final gen of last run

* Iterate this ML—validation—retraining process until
ML-MOGA results reach the true Pareto-optimal front

- But when is that? How do we know our
predictions have become accurate enough and
our ML-MOGA derived Pareto front is the actual
Pareto front?

- Also, traditional MOGA requires =640 gen, ML-
MOGA trained on 10 gen » minimizing no. of
additional required iterations is crucial to
maintaining large overall speedup
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Distance Metrics & Convergence

Dimensions of

Genm / input space N
* Introduce two distance metrics for input/objective space |nput / n n N (m) B agln 1)
 Euclidean norms normalized in each variable - single unit- Space 0;(m) = n(n — 1 Z 4 Z - )
free relative measure for movement of distribution in input/ /‘ 3—1 k=1 V1=
objective space Pop size n Input / of child j at gen m Par?é‘:?m range
* Metrics can inform us when
- MOGA can be considered truly converged (required for
full automation) Objective Space
- there is no more added benefit from an additional €0 of child j at gen m DA of child j at gen m MA of child j at gen m

iteration of retraining—ML—validation

- \ ] v
 For objective space, choice of “golden target” leaves some 5, ) — 1 Z (€mj — 80)2 n (ij — Do)2 n (Mmj — Mo)2
freedom to lattice designer (not sensitive as long as chosen aggressively) ¢ i1 €0 Dy My
* MOGA considered converged when for large m Reference Values {9, Do, Mo)
A(Si,o(m) — 0
* Consider retraining—ML—validation process converged once A Ap =0d5(myg) —do(my)

no longer reduces with additional iterations
Tracking Validated 6, Final gen my
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Distance Metrics & Convergence (cont.)
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Results

e Retraining shows very quick convergence
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Results

e Retraining shows very quick convergence
(6-8 iterations)

* Once fully converged, ML-MOGA inputs &
objectives match those of traditional MOGA
to within “noise floor”

 Stochastic noise in MOGA process accounts

for bulk of discrepancy in objective space
(input space shows excellent agreement)

NIM-A 1050, 168192 (2023)
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Results

e Retraining shows very quick convergence
(6-8 iterations)

* Once fully converged, ML-MOGA inputs &
objectives match those of traditional MOGA
to within “noise floor”

 Stochastic noise in MOGA process accounts

for bulk of discrepancy in objective space
(input space shows excellent agreement)

e ML-MOGA results remain true to underlying
phySiCS Changes (changes in error distribution, random error seed)
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Conclusions

* ML-MOGA requires =16 gen tracked vs. =640 for traditional MOGA - overall speedup =40
(depending on exact choice of cutoff 4y)

* Only very minor modifications required to existing MOGA workflow/tools

e Convergence defined in model-independent way = process can be automated & adapted to other
optimization problems (eg. other lattices, or adding additional DoF such as reverse bending or superbends)

* Only requirement: DNN prediction errors need to remain small (2% rms)

* Note, hyperparameter tuning & DNN architecture modifications can also be automated by a
non-ML expert (eg. AutoML) = focus remains on lattice design and beam dynamics

* Vast speedup allows for optimization of multiple error lattices in parallel » resulting lattice
candidate consists of inputs that are common to all error seeds - likeliest to produce Pareto-
optimal solutions for as-built machine’s error distribution

 Potential to fully automate entire workflow is highly attractive
NIM-A 1050, 168192 (2023)

Simon C. Leemann e Machine Learning-Enhanced MOGA for Ultrahigh-Brightness Lattices
AMP Seminar, April 3, 2023

("5 ADVANCED LIGHT SOURCE 4\ p/\ [=)

H BERKELEY LAB


https://doi.org/10.1016/j.nima.2023.168192

Thank You!

Questions?
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